Therapeutic inertia in the management of hyperlipidaemia in type 2 diabetic patients: a cross-sectional study in the primary care setting

Hong Kong Med J 2016 Aug;22(4):356–64 | Epub 17 Jun 2016
DOI: 10.12809/hkmj154667
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Therapeutic inertia in the management of hyperlipidaemia in type 2 diabetic patients: a cross-sectional study in the primary care setting
FY Man, MB, BS, FHKCFP; Catherine XR Chen, MRCP (UK), FHKAM (Family Medicine); YY Lau, MB, BS, FHKAM (Family Medicine); King Chan, FRACGP, FHKAM (Family Medicine)
Department of Family Medicine & General Outpatient Clinic, Queen Elizabeth Hospital, Kowloon Central Cluster, Jordan, Hong Kong
 
Corresponding author: Dr FY Man (mfy252@ha.org.hk)
 
 Full paper in PDF
Abstract
Objectives: To study the prevalence of therapeutic inertia in lipid management among type 2 diabetic patients in the primary care setting and to explore associated factors.
 
Methods: This was a cross-sectional study involving type 2 diabetic patients with suboptimal lipid control followed up in all general out-patient clinics of Kowloon Central Cluster in Hong Kong from 1 October 2011 to 30 September 2013. Main outcome measures included prevalence of therapeutic inertia in low-density lipoprotein management among type 2 diabetic patients and its association with patient and physician characteristics.
 
Results: Based on an agreed standard, lipid control was suboptimal in 49.1% (n=9647) of type 2 diabetic patients who attended for a regular annual check-up (n=19 662). Among the sampled 369 type 2 diabetic patients with suboptimal lipid control, therapeutic inertia was found to be present in 244 cases, with a prevalence rate of 66.1%. When the attending doctors’ profiles were compared, the mean duration of clinical practice was significantly longer in the therapeutic inertia group than the non–therapeutic inertia group. Doctors without prior training in family medicine were also found to have a higher rate of therapeutic inertia. Patients in the therapeutic inertia group had longer disease duration, a higher co-morbidity rate of cardiovascular disease, and a closer-to-normal low-density lipoprotein level. Logistic regression analysis revealed that lack of family medicine training among doctors was positively associated with the presence of therapeutic inertia whereas patient’s low-density lipoprotein level was inversely associated.
 
Conclusions: Therapeutic inertia was common in the lipid management of patients with type 2 diabetes in a primary care setting. Lack of family medicine training among doctors and patient’s low-density lipoprotein level were associated with the presence of therapeutic inertia. Further study of the barriers and strategies to overcome therapeutic inertia is needed to improve patient outcome in this aspect of chronic disease management.
 
New knowledge added by this study
  • Lipid control among patients with type 2 diabetes mellitus (T2DM) was far from satisfactory, with nearly half being suboptimally controlled.
  • Therapeutic inertia (TI) is common in the lipid management of T2DM patients in the primary care setting with a prevalence rate of 66.1%.
  • Lack of family medicine training among doctors was positively associated with the presence of TI whereas patient’s low-density lipoprotein level was inversely associated.
Implications for clinical practice or policy
  • Comprehensive strategies should be devised to overcome TI so that long-term cardiovascular outcome of diabetic patients can be improved.
 
 
Introduction
Type 2 diabetes mellitus (T2DM) is one of the most common chronic conditions encountered in primary care, affecting up to 10% of the Hong Kong population.1 It is also a leading cause of morbidity and mortality due to diabetic complications.2 Optimal control of cardiovascular risk factors can decrease the risk of developing diabetes-related complications.3 4 5
 
Hyperlipidaemia is one of the most important modifiable risk factors for cardiovascular disease (CVD) prevention. Studies have shown that optimal lipid control is associated with an improved cardiovascular outcome.6 7 8 9 Low-density lipoprotein (LDL) particles are considered more atherogenic than other cholesterol components and therefore stringent control of LDL is particularly important for the prevention of CVD in high-risk patients.10
 
Despite this evidence, lipid control among diabetic patients in the primary care setting, both locally and internationally, has been inadequate.11 The most recent study performed in Hong Kong found that 88.4% of diabetic patients had a suboptimal lipid level.12 Studies in Europe and the US found that the LDL control rate ranged from 30% to 55%.13 14 15 16 17 Similarly, a study of dyslipidaemia management in South Asia including China, South Korea, Malaysia, and Singapore revealed that only 48% of patients attained pre-defined low-density lipoprotein–cholesterol goals.18
 
Similar to other chronic conditions, the reasons for poor (lipid) control are multifactorial and may include patient, physician, and health care delivery factors. Among them, suboptimal medication augmentation has been identified as an important physician factor. This is known as therapeutic inertia (TI) and is said to exist whenever the health care provider does not initiate or intensify therapy appropriately when therapeutic goals are not reached: “recognition of the problem, but failure to act”.19 20 Such TI has become increasingly acknowledged as a major impediment to CVD risk factor control. Studies have suggested that TI is related to the management of diabetes and hypertension (HT) and may contribute to up to 80% of heart attacks and strokes.21 22
 
The prevalence of TI in chronic disease management has not been explored in Hong Kong. In this study, we specifically looked at the prevalence of TI in hyperlipidaemia management among diabetic patients. Internal statistical data (internal data from Hospital Authority [HA] Head Office) revealed that lipid control has been relatively poor in this cluster when compared with blood pressure and glycaemic control. Our study aimed to explore the prevalence of TI in the management of hyperlipidaemia among T2DM patients and to explore the underlying factors. By overcoming the barriers to adequate and appropriate treatment, it was expected that the long-term cardiovascular outcome of T2DM patients could be improved.
 
Methods
Subjects
Inclusion criteria
In this cross-sectional study, all T2DM patients with International Classification of Primary Care code T90 (Non-insulin Dependent Diabetes Mellitus), who had been regularly followed up in all General Outpatient Clinics (GOPCs) of Kowloon Central Cluster (KCC) from 1 October 2011 to 30 September 2013, and had blood lipid levels checked at least once during this period were recruited. In our clinics, blood and urine check-ups are usually carried out in patients with T2DM every 12 to 18 months. This 2-year retrieval period was therefore likely to cover all such patients regularly followed up in our cluster. The diagnosis of diabetes was based on the “Definition and description of diabetes mellitus” from American Diabetes Association (ADA) in 2013.23
 
Exclusion criteria
The following patients were excluded: patients who had been incorrectly diagnosed with diabetes, type 1 diabetic patients, diabetic patients who had no regular blood or urine check-up during the study period, diabetic patients followed up in a specialist clinic, and patients who died during the study period.
 
Definition of treatment target and therapeutic inertia in lipid management among type 2 diabetic patients
Various studies and guidelines have recommended targets in the treatment of hyperlipidaemia. In the HA of Hong Kong, National Cholesterol Education Program Adult Treatment Panel III Guidelines (NCEP ATP III) and ADA guidelines were used to set up the manual for the risk assessment and management programme. In this study, we used the same set of guidelines to define the level of lipid control in T2DM patients. We focused on the control of LDL as it is the most important risk factor of the lipid profile.
 
According to NCEP ATP III 200224 and ADA 2013 Guidelines on Diabetes and Lipids,23 target LDL should be <2.6 mmol/L in diabetic patients without overt CVD and <1.8 mmol/L in diabetic patients with overt CVD. In this study, CVD is defined as established ischaemic heart disease (IHD), cerebrovascular accident (CVA), or peripheral vascular disease (PVD).
 
In this study, lipid control was defined as poor and escalation of treatment indicated if the last LDL level was ≥2.6 mmol/L in diabetic patients without CVD and ≥1.8 mmol/L in diabetic patients with established CVD. Consultation notes of the follow-up immediately after the last available lipid profile test were reviewed through the HA Clinical Management System (CMS). Therapeutic inertia was considered to be present when the attending doctor failed to initiate or intensify treatment if target LDL level was not achieved. If medical notes indicated a valid reason for non-escalation of treatment despite a clinical indication, it was not considered TI. Common justifications included:
(1) Diet and lifestyle modification advice was given to patients newly diagnosed with hyperlipidaemia.
(2) Statin was started following the previous visit and LDL level was improving.
(3) Patient was non-compliant with the existing statin regimen and advice on regular drug compliance was given.
(4) Patient refused to take a statin.
(5) Patient was unable to tolerate side-effects of statin.
(6) Statin was contra-indicated, eg in patients with deranged liver function.
 
Calculation of sample size and random sampling
According to the data drawn from Clinical Data Analysis and Reporting System of the HA, a total of 19 662 T2DM patients were attending GOPCs of KCC for regular follow-up with checking of blood lipid profile during the study period. Based on the definitions mentioned above, 9647 of them had suboptimal or poor LDL control. Using the internet sample size calculator (Survey Software from Creative Research System, http://www.surveysystem.com), a sample size of 369 would provide 95% confidence level and 5% margin of error. Thus, 400 patients were sampled to ensure adequate statistical power and allow room for case exclusion. A list of random numbers was then generated from the research randomiser (http://www.randomizer.org/form.htm), from which 400 patients were selected. Details of the visit with latest lipid profile result seen were recorded. Data were derived from the consultation notes in the CMS record of selected patients and recorded on a standard data collection form (Appendix). Data were collected by the principal investigator and counter-checked by another experienced doctor in the research team.
 

Appendix. Data collection form
 
Determination of variables
Age and gender of all patients as well as smoking status, body mass index (BMI), latest blood pressure, haemoglobin A1c (HbA1c) level, serum creatinine level, lipid profile, and urine albumin-to-creatinine ratio were retrieved from the CMS. The most recent blood or urine test was used for analysis if more than one test had been performed during the study period. The BMI was calculated as body weight/body height2 (kg/m2). The patient was considered a smoker if he/she currently smoked or had stopped in the last 6 months.25 The abbreviated Modification of Diet in Renal Disease formula was used to calculate the estimated glomerular filtration rate.26
 
The working profile of the attending doctors was retrieved from the Central Office of Department of Family Medicine (FM) and GOPC, KCC. Duration of clinical practice was calculated as the number of years from registration with the Medical Council of Hong Kong. The training status of FM of doctors was documented and categorised according to the following criteria:
  • Group 1: Doctors who had never received any formal FM training.
  • Group 2: Doctors who had completed basic vocational training from Hong Kong College of Family Physicians (HKCFP), or had studied the diploma of FM (DFM).
  • Group 3: Doctors who were an intermediate fellow who had obtained fellowship in HKCFP.
  • Group 4: Doctors were FM specialists who had obtained fellowship of the Hong Kong Academy of Medicine.
  •  
    Statistical analysis
    All data were entered and analysed using computer software (Windows version 21.0; SPSS Inc, Chicago [IL], US). Student’s t test and analysis of variance were used to analyse continuous variables and the Chi squared test for categorical data. Fisher’s exact test was used if the sample size was less than five. Multivariate stepwise logistic regression was used to determine the association between TI and the significant different variables from patient characteristics and doctor characteristics. All statistical tests were two-sided, and a P value of <0.05 was considered statistically significant.
     
    Ethical considerations
    The study protocol was reviewed and approved by the Research Ethics Committee of HA (Kowloon Central/Kowloon East Cluster) [Reference number: KC/KE-13-0247/ER-1].
     
    Results
    A total of 21 960 T2DM patients were identified from the KCC GOPC Diabetes Mellitus registry from 1 October 2011 to 30 September 2013. Among them, 19 662 (89.5%) patients had their lipid profile checked at least once during the study period; 9647 (49.1%) cases had suboptimal lipid control based on the defined criteria above, including 1733 cases with co-existing CVD and 7914 cases without CVD.
     
    Among 400 randomly sampled diabetic patients with suboptimal lipid control, 31 were excluded including 21 who were being followed up in other clinics for diabetic control, nine who died during the study period, and one who was wrongly diagnosed with diabetes. The remaining 369 cases were recruited for data analysis (Fig).
     

    Figure. Patient recruitment in this study
     
    Table 1 summarises the demographic characteristics of the recruited patients. The mean (± standard deviation) age of the study population was 65.5 ± 11.9 years and 186 (50.4%) were female. The mean duration of diabetes was 9.1 ± 7.9 years. With regard to their co-morbidities, 306 (82.9%) patients had concomitant HT, 24 (6.5%) had IHD, 40 (10.8%) had CVA, and two (0.5%) had PVD. The mean LDL level was 3.12 ± 0.61 mmol/L and only 101 (27.4%) patients were prescribed a statin.
     

    Table 1. Demographic characteristics of type 2 diabetic patients recruited into the study
     
    Table 2a summarises the demographic characteristics of the attending doctors. A total of 56 doctors, among whom 19 (33.9%) were female, attended the 369 diabetic patients. The mean duration of clinical practice was 13.6 ± 9.6 years. With regard to FM training status, 13 (23.2%) doctors had received no FM training, 18 (32.1%) received basic training or studied DFM, 13 (23.2%) were intermediate FM fellows, and 12 (21.4%) were FM specialists.
     

    Table 2. (a) Demographic profile of physicians caring for the recruited patients with diabetes, and (b) subanalysis of attending doctors’ profile according to duration of clinical practice and Family Medicine training status
     
    Subanalysis of attending doctors’ profile according to their duration of clinical practice and FM training status is shown in Table 2b. Training status of FM varied significantly with duration of clinical practice (P<0.001). Among 13 doctors who had worked for ≤5 years, all had been a basic FM trainee or had obtained a DFM. On the other hand, among 12 doctors who had worked for over 20 years, most (n=9, 75%) had not received any formal FM training.
     
    Among the 369 recruited T2DM patients, treatment was escalated in 47 (12.7%). Justification for not intensifying treatment was provided in 78 (21.1%) cases. Justification was as follows: 19 patients were given dietary advice on lifestyle modifications as they were newly diagnosed with hyperlipidaemia; in 13 patients, a statin had been newly commenced at the previous visit and lipid level was lower compared with pretreatment; five patients were non-compliant with the existing treatment regimen and advice on compliance was given; 28 patients refused to start a statin despite medical advice; six patients had been unable to tolerate side-effects of statin. Statin therapy was contra-indicated in seven patients with impaired liver function. In the remaining 244 cases, TI was present with a prevalence rate of 66.1%.
     
    Table 3 shows the characteristics of physicians in TI-positive and TI-negative patients. The duration of clinical practice of attending doctors was significantly longer in the TI group compared with the non-TI group (P=0.001), with doctors working for over 20 years having a particularly higher rate of TI (82.4%). Doctors without any FM training also had a higher rate of TI (77.7%; P=0.006).
     

    Table 3. Comparison of the prevalence of TI according to profile of attending doctors
     
    Table 4 summarises the characteristics of T2DM patients in TI-positive and TI-negative groups. Patients in the TI-positive group had a longer duration of diabetes (9.8 ± 8.1 years in TI-positive group vs 7.8 ± 7.4 years in TI-negative group; P=0.024) and lower total cholesterol level and LDL level (both P<0.001). The co-existence of CVD (IHD, CVA, PVD) was more common in the TI-positive group (P=0.003). Other characteristics including patient gender, age, BMI, smoking status, blood pressure, HbA1c level, and type and dose of current statin use were comparable for both groups (all P>0.05).
     

    Table 4. Patient profile in the presence or absence of TI
     
    Based on the results from Tables 3 and 4, multivariate stepwise logistic regression analysis was performed to identify any factors that contributed to TI (Table 5). Only variables that were significantly different in the univariate analysis were included in the regression model. As the FM training status varied significantly with the duration of clinical practice (Table 2b, P<0.001) and these two factors were interrelated, only one of these two variables was included in the logistic regression analysis. As the P value of FM training status (P=0.006) was smaller than that for years of clinical practice (P=0.007) in the univariate analysis (Table 3), FM training status was entered into the logistic regression analysis. Lack of FM training was positively associated with TI (odds ratio [OR]=2.170; P=0.008), whereas patient’s LDL level was inversely associated (OR=0.320; P=0.001).
     
    Discussion
    This was the first clinical analysis of TI in lipid management among T2DM patients managed locally in the primary care setting. It has provided important background information about the prevalence of TI in this group of patients. It also explored possible underlying factors from both the doctor’s and patient’s perspective.
     
    Our study found that lipid control among T2DM patients was far from satisfactory, with 49.1% suboptimally controlled. This is consistent with reports that a high proportion of patients with hyperlipidaemia do not achieve their LDL goal.27 28 It is important to note that TI was present in 66.1% of these cases, meaning that in over 60% of diabetic patients with dyslipidaemia, appropriate management including dietary advice or drug treatment was not provided. This relatively high TI rate should alert primary care physicians to the importance of lipid control among T2DM patients as greater TI leads to poorer clinical outcomes. A similar study carried out by Whitford et al29 has shown that TI was present in 80% of consultations when lipid control was addressed among diabetic patients managed in the primary care setting in Middle East countries. This rate was much higher than the TI in blood pressure control (68%) and glycaemic control (29%). A similar study of lipid management in high-risk patients at a large academic primary care practice in the US has shown that statin dose was augmented at only 16% of over 2000 patient visits where the patient was suboptimally controlled.30 Among the sampled 369 poorly controlled T2DM patients in this study, only 27.4% (n=101) were treated with simvastatin, which is the only statin available in Hong Kong GOPCs. In addition, most (74.3%, 75/101) were treated with a lower dose (5-10 mg daily) that is considered inadequate according to ATP-IV guidelines in which a moderate dose of statin, such as simvastatin 20-40 mg daily, is recommended for T2DM patients in order to achieve target LDL level.31 Thus, the low statin prescription rate and the inadequate dose of statin may together contribute to the suboptimal lipid control among T2DM patients in primary care.
     
    A possible explanation for the TI in dose augmentation of simvastatin is the potential drug-drug interaction with calcium channel blockers (CCB) such as amlodipine.32 The maximum recommended dose for simvastatin in conjunction with amlodipine use is 20 mg/day. Since 306 (82.9%) sampled diabetic patients were found to have concomitant HT and among them 122 (40%) were prescribed amlodipine for blood pressure control, doctors might have hesitated to increase the dose of simvastatin. In our study, 10 diabetic patients in the TI-positive group were prescribed amlodipine and simvastatin 20 mg daily. In this scenario, either changing simvastatin to an alternative statin such as atorvastatin or changing amlodipine to an alternative CCB such as nifedipine is recommended if lipid control remains suboptimal. Failing to switch to another statin or CCB when clinically indicated is also considered to be TI. A more proactive approach to prescribing different drug combinations is required in order to achieve the target LDL in a timely manner.
     
    Further studies of the physician profile relative to the presence of TI have revealed that doctors with longer duration of clinical practice have a higher rate of TI that is even more prominent in those with over 20 years’ clinical practice. These findings are contrary to an overseas study where more experienced doctors had a lower rate of TI33; nonetheless, this study was performed in a secondary care setting and involved cardiologists who managed hyperlipidaemia in patients with IHD. In our study, most doctors who had worked for over 20 years had no formal FM training (9 [75%] of 12 doctors; Table 2b). In addition, when training status was compared, doctors with no FM training had a higher rate of TI than those who had completed FM training (77.7% vs 60.0%; P=0.006). We postulate that doctors who have worked for over 20 years may be less familiar with the latest guidelines on lipid management, possibly due to a lack of FM or related training. If physicians lack appropriate training, there will be gaps in their knowledge of latest clinical management guidelines. This has been confirmed by review articles which showed that TI could be attributed to insufficient knowledge of guidelines.34
     
    When patient’s profile was compared, surprisingly, TI was present in 51 of 62 diabetic patients with overt CVD, and only 11 cases were properly managed (Table 4). This is a considerable concern since lipid control is particularly important and as a secondary prevention strategy in this group of patients. The target for LDL control is much more stringent at <1.8 mmol/L in this group of patients, and more difficult to achieve clinically. Some doctors may not have been aware of this stricter/lower LDL target and have been satisfied with LDL level of 1.8 to 2.6 mmol/L. This is supported by our finding that among diabetic patients with overt CVD whose lipid profile was inadequately controlled (n=62), more than half (n=33, 53.2%) had LDL controlled at 1.8 to 2.6 mmol/L. Physicians should take a more proactive approach particularly in this high-risk group of patients and adhere closely to the prevailing management guidelines in CVD risk factor control.
     
    Multiple variable logistic regression analysis revealed that patients with lower LDL or LDL level closer to normal was associated with TI (Table 5). This could be explained by the threshold effect, that is, the closer the LDL level is to target level, the less likely is the doctor to intensify treatment. This threshold effect has been commonly observed in other similar studies.30 35 Other factors that contribute to the threshold effect could be ‘overestimation of current care’ or ‘complacency with borderline values’, leading to the physician’s subjective misperception that the care provided is sufficient.34
     

    Table 5. Logistic regression analysis of factors contributing to the presence of therapeutic inertia
     
    Implications for primary care
    Our study found that TI was common in lipid management among diabetic patients managed in the GOPCs of KCC, with a prevalence of 66.1%. Doctors with a longer duration of clinical practice and who had not received formal FM training had a higher rate of TI. Patients with a closer-to-target LDL were more common in the TI group. Considering that a large volume of diabetic patients are managed in the primary care setting, comprehensive strategies with a more proactive approach should be devised to combat TI so that the cardiovascular outcome of diabetic patients can be improved.
     
    Strengths and limitations of the study
    This is the first clinical analysis of TI in lipid management among diabetic patients managed locally in the primary care setting. It has provided important background information about the prevalence of TI in lipid management among diabetic patients and explored the possible underlying factors from both the doctor’s and patient’s perspective. These findings will help improve strategies to overcome TI in lipid control for these patients.
     
    There are some limitations in this study. First, the study was carried out in one single cluster of HA and therefore selection bias might exist. These results from the public primary health care sector might not be applicable to the private sector or secondary care. In addition, the number of doctors with or without FM training was quite discrepant in this study (43 vs 13) and may affect the generalisation of findings. Nevertheless, the present results may lay the groundwork for similar studies in the future, both locally and internationally. Second, patients with diabetes who had not had any blood testing performed during the study period were excluded (n=2298, 10.5% of all diabetic cases). The lipid control status of this group of diabetic patients remained unknown. This might bias the accurate measurement of TI among our target population. Third, only TI in LDL management was explored in this study. Management of hypertriglyceridaemia was not addressed in view of its less-important role as a risk factor for CVD. Future studies exploring the TI in hypertriglyceridaemia management are needed to comprehensively assess lipid control among diabetic patients. Lastly, this study relied heavily on review of consultation notes to identify justification for submaximal therapy and determine presence of TI. Insufficient justification for a certain treatment may have resulted in an overestimation of the prevalence of TI.
     
    Conclusions
    This study found that TI was common in the lipid management of diabetic patients managed in GOPCs of KCC, with a prevalence rate of 66.1%. Doctors without FM training and a closer-to-target LDL level among T2DM patients were associated with the presence of TI. Comprehensive strategies should be devised to overcome TI so that the cardiovascular outcome of diabetic patients can be improved.
     
    Acknowledgements
    We are indebted to Ms Katherine Chan, statistical officer of Queen Elizabeth Hospital, for her expert statistical support in the data analysis.
     
    Appendix
    Additional material related to this article can be found on the HKMJ website. Please go to <http://www.hkmj.org>, and search for the article.
     
    Declaration
    All authors have disclosed no conflicts of interest.
     
    References
    1. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009;301:2129-40. Crossref
    2. Leung GM, Lam KS. Diabetic complications and their implications on health care in Asia. Hong Kong Med J 2000;6:61-8.
    3. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004;364:685-96. Crossref
    4. Collins R, Armitage J, Parish S, Sleigh P, Peto R; Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003;361:2005-16. Crossref
    5. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003;348:383-93. Crossref
    6. Waters DD, Ku I. Early statin therapy in acute coronary syndromes: the successful cycle of evidence, guidelines, and implementation. J Am Coll Cardiol 2009;54:1434-7. Crossref
    7. Ward S, Lloyd Jones M, Pandor A, et al. A systematic review and economic evaluation of statins for the prevention of coronary events. Health Technol Assess 2007;11:1-160,iii-iv. Crossref
    8. O’Regan C, Wu P, Arora P, Perri D, Mills EJ. Statin therapy in stroke prevention: a meta-analysis involving 121,000 patients. Am J Med 2008;121:24-33. Crossref
    9. Vrecer M, Turk S, Drinovec J, Mrhar A. Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke. Meta-analysis of randomized trials. Int J Clin Pharmacol Ther 2003;41:567-77. Crossref
    10. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 2003;326:1423. Crossref
    11. Fung CS, Chin WY, Dai DS, et al. Evaluation of the quality of care of a multi-disciplinary risk factor assessment and management programme (RAMP) for diabetic patients. BMC Fam Pract 2012;13:116. Crossref
    12. Kung K, Chow KM, Hui EM, et al. Prevalence of complications among Chinese diabetic patients in urban primary care clinics: a cross-sectional study. BMC Fam Pract 2014;15:8. Crossref
    13. Kotseva K, Wood D, De Backer G, De Bacquer D, Pyörälä K, Keil U; EUROASPIRE Study Group. Cardiovascular prevention guidelines in daily practice: a comparison of EUROASPIRE I, II, and III surveys in eight European countries. Lancet 2009;373:929-40. Crossref
    14. Toth PP, Zarotsky V, Sullivan JM, Laitinen D. Dyslipidemia treatment of patients with diabetes mellitus in a US managed care plan: a retrospective database analysis. Cardiovasc Diabetol 2009;8:26. Crossref
    15. Ferrières J, Gousse ET, Fabry C, Hermans MP; French CEPHEUS Investigators. Assessment of lipid-lowering treatment in France—the CEPHEUS study. Arch Cardiovasc Dis 2008;101:557-63. Crossref
    16. Kotseva K, Stagmo M, De Bacquer D, De Backer G, Wood D; EUROASPIRE II Study Group. Treatment potential for cholesterol management in patients with coronary heart disease in 15 European countries: findings from the EUROASPIRE II survey. Atherosclerosis 2008;197:710-7. Crossref
    17. Santos RD, Waters DD, Tarasenko L, et al. Low- and high-density lipoprotein cholesterol goal attainment in dyslipidemic women: The Lipid Treatment Assessment Project (L-TAP) 2. Am Heart J 2009;158:860-6. Crossref
    18. Kim HS, Wu Y, Lin SJ, et al. Current status of cholesterol goal attainment after statin therapy among patients with hypercholesterolemia in Asian countries and region: the Return on Expenditure Achieved for Lipid Therapy in Asia (REALITY-Asia) study. Curr Med Res Opin 2008;24:1951-63. Crossref
    19. Phillips LS, Branch WT, Cook CB, et al. Clinical inertia. Ann Intern Med 2001;135:825-34. Crossref
    20. Okonofua EC, Simpson KN, Jesri A, Rehman SU, Durkalski VL, Egan BM. Therapeutic inertia is an impediment to achieving the Healthy People 2010 blood pressure control goals. Hypertension 2006;47:345-51. Crossref
    21. Andrade SE, Gurwitz JH, Field TS, et al. Hypertension management: the care gap between clinical guidelines and clinical practice. Am J Manag Care 2004;10:481-6.
    22. O’Connor PJ, Sperl-Hillen JM, Johnson PE, Rush WA, Biltz G. Clinical inertia and outpatient medical errors. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in patient safety: from research to implementation. Vol 2: Concepts and methodology. Rockville (MD): Agency for Healthcare Research and Quality (US); 2005.
    23. American Diabetes Association. Standards of medical care in diabetes—2013. Diabetes Care 2013;36 Suppl 1:S11-66. Crossref
    24. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143-421.
    25. Centers for Disease Control and Prevention (CDC). Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000-2004. MMWR Morb Mortal Wkly Rep 2008;57:1226-8.
    26. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461-70. Crossref
    27. Park JE, Chiang CE, Munawar M, et al. Lipid-lowering treatment in hypercholesterolaemic patients: the CEPHEUS Pan-Asian survey. Eur J Prev Cardiol 2012;19:781-94. Crossref
    28. Khoo CM, Tan ML, Wu Y, et al. Prevalence and control of hypercholesterolaemia as defined by NCEP-ATPIII guidelines and predictors of LDL-C goal attainment in a multi-ethnic Asian population. Ann Acad Med Singapore 2013;42:379-87.
    29. Whitford DL, Al-Anjawi HA, Al-Baharna MM. Impact of clinical inertia on cardiovascular risk factors in patients with diabetes. Prim Care Diabetes 2014;8:133-8. Crossref
    30. Goldberg KC, Melnyk SD, Simel DL. Overcoming inertia: improvement in achieving target low-density lipoprotein cholesterol. Am J Manag Care 2007;13:530-4.
    31. Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults, Journal of the American College of Cardiology 2013. Available from: https://www.joslin.org/docs/2013-ACC-AHA-Guideline-Treatment-of-Blood-Cholestero-_to-Reduce-Atherosclerotic-Cardiovascular-Risk-in-Adults.pdf. Accessed Mar 2016.
    32. Simvastatin summary of product characteristics. Available from: http://www.medicines.org.uk/emc/medicine/1201/SPC. Accessed Mar 2016.
    33. Aujoulat I, Jacquemin P, Rietzschel E, et al. Factors associated with clinical inertia: an integrative review. Adv Med Educ Pract 2014;5:141-7. Crossref
    34. Byrnes PD. Why haven’t I changed that? Therapeutic inertia in general practice. Aust Fam Physician 2011;40:24-8.
    35. Berlowitz DR, Ash AS, Glickman M, et al. Developing a quality measure for clinical inertia in diabetes care. Health Serv Res 2005;40:1836-53. Crossref

    Prevalence of infections among residents of Residential Care Homes for the Elderly in Hong Kong

    Hong Kong Med J 2016 Aug;22(4):347–55 | Epub 6 Jul 2016
    DOI: 10.12809/hkmj164865
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE  CME
    Prevalence of infections among residents of Residential Care Homes for the Elderly in Hong Kong
    Carmen SM Choy, MB, BS1; H Chen, MB, BS, FHKAM (Community Medicine)2; Carol SW Yau, MB, BS, FHKAM (Community Medicine)3; Enoch K Hsu, BSc, MSc2; NY Chik, BNurs2; Andrew TY Wong, MB, BS, FHKAM (Medicine)2
    1 Accident and Emergency Department, Queen Elizabeth Hospital, Jordan, Hong Kong
    2 Infection Control Branch, Centre for Health Protection, Hong Kong
    3 Surveillance and Epidemiology Branch, Centre for Health Protection, Hong Kong
     
    Corresponding author: Dr Carmen SM Choy (carmencly@yahoo.com.hk)
     
     Full paper in PDF
    Abstract
    Introduction: A point prevalence study was conducted to study the epidemiology of common infections among residents in Residential Care Homes for the Elderly in Hong Kong and their associated factors.
     
    Methods: Residential Care Homes for the Elderly in Hong Kong were selected by stratified single-stage cluster random sampling. All residents aged 65 years or above from the recruited homes were surveyed. Infections were identified using standardised definitions. Demographic and health information—including medical history, immunisation record, antibiotic use, and activities of daily living (as measured by Barthel Index)—was collected by a survey team to determine any associated factors.
     
    Results: Data were collected from 3857 residents in 46 Residential Care Homes for the Elderly from February to May 2014. A total of 105 residents had at least one type of infection based on the survey definition. The overall prevalence of all infections was 2.7% (95% confidence interval, 2.2%-3.4%). The three most common infections were of the respiratory tract (1.3%; 95% confidence interval, 0.9%-1.9%), skin and soft tissue (0.7%; 95% confidence interval, 0.5%-1.0%), and urinary tract (0.5%; 95% confidence interval, 0.3%-0.9%). Total dependence in activities of daily living, as indicated by low Barthel Index score of 0 to 20 (odds ratio=3.0; 95% confidence interval, 1.4-6.2), and presence of a wound or stoma (odds ratio=2.7; 95% confidence interval, 1.4-4.9) were significantly associated with presence of infection.
     
    Conclusions: This survey provides information about infections among residents in Residential Care Homes for the Elderly in the territory. Local data enable us to understand the burden of infections and formulate targeted measures for prevention.
     
    New knowledge added by this study
    • Characteristics of local Residential Care Homes for the Elderly (RCHE) residents were explored. Most individuals had medical co-morbidities and required assistance with activities of daily living (ADL); use of an indwelling medical device was also common.
    • Local prevalence of infections among residents in RCHE was 2.7% and the most common infection was of the respiratory tract.
    • Total dependence in ADL and presence of a wound or stoma were associated with presence of infections among residents in RCHE in Hong Kong.
    Implications for clinical practice or policy
    • Measures that focus on prevention of respiratory tract infection among the elderly should be emphasised and an infection control programme should be designed to enhance such practice in RCHE.
    • Infection control protocols can be developed according to specific areas of nursing care, for example, wound care or catheter care.
     
     
    Introduction
    Ageing is a worldwide phenomenon, and Hong Kong, without exception, is encountering the same population change. In 2014, the proportion of our elderly population aged 65 years or above was 15%. This proportion is expected to double over the next 20 years, to 28% in 2034.1
     
    In Hong Kong, Residential Care Homes for the Elderly (RCHEs) provide different levels of care for the elderly who—for personal, social, health, or other reasons—can no longer live alone or with their family. These RCHEs can be broadly categorised as private homes (PH) and non-private homes (NPH); the former are run by private entrepreneurs and vary in size and capacity, while the latter are run by non-governmental organisations and include care and attention homes for the elderly and subvented, and self-financing and contract homes that provide subsidised care for the elderly. In 2015, there were around 740 RCHEs providing over 73 000 residential placements over the territories and residential care for approximately 7% of the elderly in Hong Kong.1 2 These numbers are expected to increase further.
     
    Generally speaking, RCHEs are very heterogeneous in terms of size, facilities, manpower, and level of care. Some residents are encouraged to participate in various types of group activities while some residents may require assistance in daily activities. These activities, together with the confined and shared living environment, may promote the transmission of infectious diseases.
     
    Infections are an important cause of morbidity and mortality among the elderly, and place a significant burden on our health care system. Residents of RCHEs are usually frail; compared with their community-dwelling counterparts, they are more susceptible to infections and related complications. Overseas studies conducted in a hospital setting have shown that the mortality rate of community-acquired pneumonia is 30%, while that in nursing homes is substantially higher, with a reported rate of up to 57%.3 Infections may be a cause as well as the consequence of functional impairment among RCHE residents, leading to a reduction in their quality of life.4
     
    Local studies of infectious diseases in the RCHE setting are scarce. The last such survey was conducted in 2006.5 Continuous or regular surveillance serves to reveal the disease burden to increase awareness of infections and to identify critical areas for infection control. It is important that we understand the local epidemiology and burden of infections among RCHE residents and apply measures to control these infections and safeguard the health of this vulnerable group.
     
    Methods
    We conducted a point prevalence survey of common infections among residents of RCHEs in Hong Kong.
     
    Population and setting
    All RCHEs in Hong Kong were included. All residents aged 65 years or above who were present at 9 am (the reference time) on the survey day were included. Residents were excluded from the survey if: (1) he/she was not present at the reference time (owing to medical appointment, admission to hospital, or home leave from the RCHE); or (2) he/she attended the RCHE as a day patient/resident.
     
    Sampling strategy
    A list of all RCHEs in Hong Kong was retrieved from the Social Welfare Department website.6 All RCHEs on the list were stratified according to the main geographical region of Hong Kong (Kowloon, Hong Kong Island, and New Territories) and type of RCHE (PH and NPH) into six strata. Stratified single-stage cluster random sampling was performed using the captioned list as the sampling frame. All residents were surveyed in each recruited home.
     
    Data collection
    The survey was conducted from February to May 2014. A survey team comprising doctors, nurses, and research staff visited the RCHEs for data collection on any one day during the survey period. A standardised survey form was developed based on a previous similar prevalence survey.5 This survey form comprised four parts: (1) socio-demographic information about the resident; (2) health information including medical history, vaccination history, and antibiotic use; (3) measurement of activities of daily living (ADL) using the Barthel Index (BI)7; and (4) a checklist of acute symptoms of common infections. Symptoms of acute infections were obtained by doctors by interviewing the residents or their major carers with the help of RCHE staff. All health-related information was verified by doctors or nurses; functional status of residents was assessed by trained nurses using the BI.
     
    A pilot study was conducted in two RCHEs in February 2014 to field test the data collection tools. Inter-rater reliability on BI was assessed during the period for the six trained nurses. Cohen’s kappa of BI estimated ranged from 0.8 to 1, suggesting good inter-rater reliability among them.
     
    The survey was conducted in an anonymous manner. Written consent was obtained from the RCHEs. Verbal consent was obtained from residents and/or their relatives. If any residents (or their relatives) refused to participate in the survey, their information was not retrieved. If relevant data were not available on the survey day, data would be retrieved within 1 week. The study was approved by the Ethics Committee of the Department of Health.
     
    Outcome measures
    Infection was defined using any one of the following criteria: (1) presence of symptoms and/or signs of infection that developed in the 24 hours preceding the survey day, that fulfilled the surveillance criteria of the Canadian Consensus Conference8; (2) infection diagnosed by a locally registered physician (eg visiting medical officers, general practitioners); or (3) consumption of antimicrobial agents on the survey day for a specific infection.
     
    Sample size and power estimation
    Sample size was estimated to determine the prevalence of infections among residents in RCHEs in Hong Kong. Based on a previous prevalence survey in Hong Kong,5 the prevalence of infections was 5.7%, the design effect (DEFF) was 1.765 with an intraclass correlation coefficient (ICC) of 0.025 and average cluster size of 31.61. Assuming the margin of error to be 0.2, given a conservative DEFF of 2, the sample size calculated was 3178.
     
    Statistical analyses
    R (version 3.0.2) was used for statistical analysis. “Survey” package (version 3.29-5) in R was used to calculate the prevalence of infections adjusted for cluster sampling. Prevalence rates of infections and other study variables were calculated using “svyciprop” function from the “Survey” package. Logistic regression with adjustment on cluster sampling was performed using “svyglm” function from the “Survey” package to identify risk factors for infection. Variables were included for multivariate analysis if: (1) the P value was <0.25 in univariate analysis or (2) the variables had been considered as risk factors of infection in previous studies, such as mobility status, use of medical devices, presence of wound, home size, gender, and recipient of the Comprehensive Social Security Assistance (as a surrogate measurement of social economic status).9 10 11 12 In addition, subgroup analyses were performed to explore the association of specific risk factors with different types of infection, such as the presence of chronic obstructive pulmonary disease (COPD) with respiratory tract infection (RTI) and diabetes mellitus (DM) with skin and soft tissue infection (SSTI). In order to adjust for multiple comparisons, P values calculated for exploration of association between risk factors and different types of infection were adjusted using Bonferroni correction. A P value of <0.05 was considered to be statistically significant.
     
    Results
    A total of 100 RCHEs were invited. The overall response rate was 46% (n=46). Table 1 illustrates the number of recruited RCHEs stratified by region and home type. A higher response rate was noted in NPHs (70.6%, n=12) than PHs (42.2%, n=35). The ICC and DEFF calculated from the sample collected were 0.0035 and 1.45, respectively. The mean home capacity of the participating RCHEs was 111 residents per home (95% confidence interval [CI], 88-133 residents per home) with a median occupancy of 89%. Among the staff in participating RCHEs, 45.9% were personal care workers, 14.7% were health care workers, and 11% were nurses (including registered nurses and enrolled nurses). There was no significant difference in terms of home capacity, occupancy, or staffing level between participating and non-participating RCHEs based on data from the annual assessment of all RCHEs conducted by Elderly Health Service, Department of Health.
     

    Table 1. Recruitment of Residential Care Homes for the Elderly (RCHEs)
     
    Demographics and underlying co-morbidity of residents
    Among the 4127 residents in the participating RCHEs, 261 (6.3%) were excluded from the survey as they were not available due to hospitalisation, medical appointment, home leave, or other personal reasons. All 3866 residents who were at the participating RCHEs at 9 am on the survey day were invited and joined the survey. Nine (0.2%) residents were not included in the analysis as their RCHEs failed to provide relevant information subsequently. Among the 3857 residents surveyed, the mean age was 85.2 years, and the female-to-male ratio was 1.9:1. Most residents were Chinese (99.8%, n=3849), and 56.5% (n=2178) of those surveyed were above 84 years old. The mean age of male and female residents was 82.4 and 86.8 years, respectively. Table 2 shows the demographic information of the surveyed sample. Duration of their stay in RCHEs varied; a quarter had resided in a RCHE for less than 1 year, 29.4% for 1 to 3 years, 24.7% for 3 to 6 years, and 20.9% for more than 6 years. For ADL of residents, the median BI score was 30, and 46.7% of residents scored 0-20 indicating they were totally dependent in ADL.13 Regarding use of an indwelling medical device, 14.4% of residents required at least one device, mostly a nasogastric tube (9.2%) or urinary catheter (5.3%). Up to 75.8% of residents received the 2013/2014 seasonal influenza vaccine and 50.2% had received the pneumococcal vaccine. Most residents (87.1%) had more than one underlying co-morbidity with the most common diagnosis being hypertension (69.3%), followed by dementia (37.0%) and stroke (35.0%) [Table 3].
     

    Table 2. Demographic information of surveyed sample at baseline
     

    Table 3. Common co-morbidities of the study population
     
    Prevalence of infections
    A total of 105 residents were diagnosed with at least one infection based on the survey definition. Among these residents, 102 had one type of infection and three had two types of infection. The overall prevalence of infections was 2.7% (95% CI, 2.2%-3.4%). Table 4 shows the prevalence of different infections.
     

    Table 4. Prevalence of different types of infections among residents of Residential Care Homes for the Elderly
     
    Of all the infections, RTI was the most common type, comprising 49.1% (n=53) of all infections, followed by SSTI (25.0%, n=27) and urinary tract infection (UTI) [17.6%, n=19; Fig].
     

    Figure. Distribution of different types of infections in Residential Care Homes for the Elderly (RCHEs)
     
    Factors associated with infectious diseases
    Table 5 illustrates factors associated with presence of any infection and specific infections. Residents with ADL dependency, as reflected by low BI score of 0-20 (odds ratio [OR]=3.0; 95% CI, 1.4-6.2), presence of a wound or stoma (OR=2.7; 95% CI, 1.4-4.9), or co-morbidities including cardiovascular diseases (CVD) [OR=2.4; 95% CI, 1.4-4.0] and respiratory diseases (OR=2.6; 95% CI, 1.6-4.1) were significantly likely to have an infection. Seasonal influenza vaccination (OR=0.82; P=0.452) and pneumococcal vaccination (OR=0.66; P=0.201) were associated with a lower risk of infection but neither reached statistical significance.
     

    Table 5. Association between presence of infections and RCHEs/resident characteristics
     
    Subgroup analysis by site of infection showed that low BI score (OR=2.6; 95% CI, 1.3-5.2) and COPD (OR=3.7; 95% CI, 1.5-9.1) were significantly associated with RTI. Factors significantly associated with SSTI included low BI score (OR=5.5; 95% CI, 1.7-17.5), presence of wound(s) and stoma (OR=9.0; 95% CI, 4.7-17.1), having DM (OR=1.9; 95% CI, 1.0-3.6), mental illness (OR=3.7; 95% CI, 1.2-11.8), and CVD (OR=4.6; 95% CI, 1.3-16.3). Presence of a urinary catheter was significantly associated with UTI (OR=5.6; 95% CI, 1.9-16.2).
     
    Discussion
    This point prevalence survey aimed to investigate the prevalence of infections among residents living in RCHEs in Hong Kong. It is essential to understand that this specific group of elderly differs significantly from their community-dwelling counterparts in terms of health condition, level of mobility, daily routine behaviour, and level of care received. The confined living environment, shared bathing equipment, group dining facilities, and close human-to-human contact potentially foster the transmission of infection. A local study has shown that nursing home residency is an independent predictor of infection-related mortality, pneumonia-related mortality, and all-cause mortality.14
     
    In this study, the overall prevalence of infections was 2.7%. Among all infections, RTI, SSTI, and UTI ranked top with a prevalence of 1.3%, 0.7%, and 0.5%, respectively. Low BI score of 0-20, presence of a wound or stoma, and co-morbidities including CVD and respiratory diseases were significantly associated with presence of infection.
     
    Compared with the previous prevalence survey of infections among residents of RCHEs in Hong Kong conducted in November 2006,5 a lower overall prevalence was noticed in this survey. In 2006 the prevalence was 5.7%.5 A similar pattern of prevalence regarding type of infection was observed for common cold or pharyngitis (included under RTI in our study) that was the most common type of infection, followed by SSTI and UTI. This reduction in overall prevalence over a 6-year period may be due to a better awareness of infection control among the general public and health care workers, particularly after the severe acute respiratory syndrome endemic in 2003 and H1N1 swine influenza endemic in 2009. Another encouraging finding in this study may also account for this improved trend: an increased uptake of seasonal influenza vaccine was noted, from 60.3% in year 2012-2013 to 75.8% in year 2013-2014 among surveyed residents.
     
    Prevalence surveys conducted in long-term care facilities (LTCF) overseas have generally reported an overall higher prevalence of infection, from 3.4% to 11.8%.15 16 17 18 19 20 21 22 23 24 Most reported UTI as the most common type of infection.15 16 19 20 21 22 23 Despite a lower prevalence in our survey compared with overseas surveys, we must interpret the results with caution for a few reasons. First, the difference in survey method, study population, and case definition among these studies may render direct comparison of prevalence inappropriate. Second, it is important to understand the differences between settings and the elderly population in LTCF in Hong Kong and those overseas. In the US, LTCF can further be categorised into veteran care centres that provide care for elderly military officers, and nursing homes and residential care communities that offer different levels of assistance in ADL depending on the elderly individual’s capacity for self-care.25 On the contrary, in Europe, more than two thirds of those receiving institutional care are above 80 years of age.26 Third, staff levels, occupancy,25 local infection practice and guidelines, and accessibility to health care facilities, such as emergency room or secondary health care facilities in overseas LTCF differ significantly from our local setting. These factors may explain the difference in prevalence between local RCHEs and overseas LTCF.
     
    This study also investigated the risk factors associated with the presence of infection among residents. Low BI score of 0-20 representing total dependency in ADL, and presence of a wound or stoma were associated with presence of any type of infection. The findings are consistent with past studies that suggest limitations in ADL or functional impairment, and presence of skin ulcers are risk factors for infection.15 17 21 Nevertheless, the protective effect of immunisation with seasonal influenza vaccine and pneumococcal vaccine was not clearly demonstrated in this study.
     
    Regarding RTI, which essentially includes upper tract infections (eg common cold or influenza-like illness) and lower tract infections (eg pneumonia), COPD and lower BI score of 0-20 were two associated factors. A few previous studies that focused on risk factors for pneumonia (or specifically nursing home–associated pneumonia) also suggested that a low BI score,27 low ADL score,27 profound debility (measured by Karnofsky score of ≤40),28 and COPD5 28 are associated factors, and is compatible with our findings.
     
    Although multiple factors were significantly associated with SSTI in our study, including low BI score, presence of wounds and stoma, co-morbidities like DM, mental illnesses and CVD, limited studies have determined risk factors for SSTI in LTCF. In Cotter et al’s study,16 presence of a urinary catheter, vascular catheter, pressure sores, or other wounds was significantly associated with SSTI. It is possible that individuals with DM or CVD are more prone to development of an ulcer or poor wound healing, and thus have a higher risk of SSTI. Further studies may be necessary to delineate the association between SSTI and other co-morbidities.
     
    Presence of an indwelling urinary catheter is not surprisingly associated with UTI, and is compatible with the previous local study5 and most overseas studies.16 29 30 This reflects the importance of proper care for indwelling urinary catheters in RCHEs.
     
    Our study provides more information regarding prevalence and risk factors associated with infectious diseases in RCHEs in Hong Kong. Readers, however, must take note of a few limitations of this study.
     
    First, a point prevalence study offers only a snapshot of events and thus a causal relationship between risk factors and infections cannot be established. Our study was conducted during February to May, which was late winter to early spring time in Hong Kong, and the prevalence of different infections may have a seasonal variation, for example, influenza.31 32 Comparison needs to take account of the season during which the study was conducted.
     
    Second, only 46 of the 100 invited RCHEs participated in the survey. This response rate may affect the generalisability of results. It is possible that the RCHEs with stronger compliance with infection control measures volunteered to participate whilst those homes that refused were less compliant and had a higher infection prevalence.
     
    Third, the exclusion of residents who were not present at the RCHEs at the reference time may have led to underestimation of the prevalence of infection. We reviewed the list of residents excluded from the survey and found 18 of them had been admitted to hospital in the 2 days preceding the survey, of whom 10 were admitted because of symptoms or signs suggestive of infection. Assuming they all fulfilled the criteria for infection in this survey, the effect was likely minimal, with an adjusted prevalence of infections of 2.9% (95% CI, 2.3%-3.7%).
     
    Fourth, demographic data, medical history, and vaccination history were retrieved from records maintained by RCHEs, but different RCHEs had different practices of record keeping. Data may have been incomplete or inadequate in certain RCHEs while others may have provided more detailed data. These differences were minimised by a standard protocol and training of the survey team and verification of data with RCHE staff on site.
     
    Finally, we did not include any infection control practice measures in our study, such as hand hygiene compliance of staff and environmental hygiene measures. While the aim of the study was not to assess the infection control practices of RCHEs, these factors could potentially affect the results in the risk factor analysis, and hence, readers should interpret the regression result in the context that confounding may present.
     
    Conclusions
    The overall prevalence of infections among RCHE residents was estimated to be 2.7%. Associated factors were identified. It is recommended that infection control measures be targeted towards these factors. Training for RCHE staff and a policy to execute infection control guidelines in RCHEs should be planned early in view of an increasing demand for services provided by RCHEs. Further study can be carried out at different times of the year to identify any seasonal changes and pattern of infections, or targeted at residents admitted to public hospitals with acute infections to estimate the overall burden on our health care sector.
     
    Acknowledgements
    The authors would like to thank the survey team for their hard work in study design and fieldwork. Furthermore, we extend our heartfelt gratitude to all the participating RCHEs and their staff for their assistance throughout the study. Without their support, this survey would not have been possible. The authors would like to thank the Elderly Health Service, Department of Health for sharing their data on annual assessment of RCHEs.
     
    Declaration
    All authors have disclosed no conflicts of interest.
     
    References
    1. Census and Statistics Department, Hong Kong SAR Government. Hong Kong population projections 2015-2064. September 2015. Available from: http://www.statistics.gov.hk/pub/B1120015062015XXXXB0100.pdf. Accessed 22 Dec 2015.
    2. Social Welfare Department, Hong Kong SAR Government. Provision of residential care services for elders (non-governmental organisations versus private sector). March 2015. Available from: http://www.swd.gov.hk/doc/elderly/ERCS/Overview%20item(b)English(31-3-2015).pdf. Accessed 22 Dec 2015.
    3. Gavazzi G, Krause KH. Ageing and infection. Lancet Infect Dis 2002;2:659-66. Crossref
    4. Büla CJ, Ghilardi G, Wietlisbach V, Petignat C, Francioli P. Infections and functional impairment in nursing home residents: a reciprocal relationship. J Am Geriatr Soc 2004;52:700-6. Crossref
    5. Chen H, Chiu AP, Lam PS, et al. Prevalence of infections in residential care homes for the elderly in Hong Kong. Hong Kong Med J 2008;14:444-50.
    6. Social Welfare Department, Hong Kong SAR Government. List, licences and briefs of residential care homes. Available from: http://www.swd.gov.hk/en/index/site_pubsvc/page_elderly/sub_residentia/id_listofresi/. Accessed 31 Dec 2013.
    7. Mahoney FI, Barthel DW. Functional evaluation: The Barthel Index. Md State Med J 1965;14:61-5.
    8. McGeer A, Campbell B, Emori TG, et al. Definitions of infection for surveillance in long-term care facilities. Am J Infect Control 1991;19:1-7. Crossref
    9. Magaziner J, Tenney JH, DeForge B, Hebel JR, Muncie HL Jr, Warren JW. Prevalence and characteristics of nursing home–acquired infections in the aged. J Am Geriatr Soc 1991;39:1071-8. Crossref
    10. Li J, Birkhead GS, Strogatz DS, Coles FB. Impact of institution size, staffing patterns, and infection control practices on communicable disease outbreaks in New York State nursing homes. Am J Epidemiol 1996;143:1042-9. Crossref
    11. Cohen S. Social status and susceptibility to respiratory infections. Ann N Y Acad Sci 1999;896:246-53. Crossref
    12. Harrington RD, Hooton TM. Urinary tract infection risk factors and gender. J Gend Specif Med 2000;3:27-34.
    13. McDowell I. Measuring health: a guide to rating scales and questionnaires. Oxford: Oxford University Press; 2006. Crossref
    14. Chan TC, Hung IF, Cheng VC, et al. Is nursing home residence an independent risk factor of mortality in Chinese older adults? J Am Geriatr Soc 2013;61:1430-2. Crossref
    15. Chami K, Gavazzi G, Carrat F, et al. Burden of infections among 44,869 elderly in nursing homes: a cross-sectional cluster nationwide survey. J Hosp Infect 2011;79:254-9. Crossref
    16. Cotter M, Donlon S, Roche F, Byrne H, Fitzpatrick F. Healthcare-associated infection in Irish long-term care facilities: results from the First National Prevalence Study. J Hosp Infect 2012;80:212-6. Crossref
    17. Eriksen HM, Iversen BG, Aavitsland P. Prevalence of nosocomial infections and use of antibiotics in long-term care facilities in Norway, 2002 and 2003. J Hosp Infect 2004;57:316-20. Crossref
    18. Moro ML, Mongardi M, Marchi M, Taroni F. Prevalence of long-term care acquired infections in nursing and residential homes in the Emilia-Romagna Region. Infection 2007;35:250-5. Crossref
    19. Lim CJ, McLellan SC, Cheng AC, et al. Surveillance of infection burden in residential aged care facilities. Med J Aust 2012;196:327-31. Crossref
    20. Tsan L, Langberg R, Davis C, et al. Nursing home–associated infections in Department of Veterans Affairs community living centers. Am J Infect Control 2010;38:461-6. Crossref
    21. Tsan L, Davis C, Langberg R, et al. Prevalence of nursing home–associated infections in the Department of Veterans Affairs nursing home care units. Am J Infect Control 2008;36:173-9. Crossref
    22. Marchi M, Grilli E, Mongardi M, Bedosti C, Nobilio L, Moro ML. Prevalence of infections in long-term care facilities: how to read it? Infection 2012;40:493-500. Crossref
    23. Dwyer LL, Harris-Kojetin LD, Valverde RH, et al. Infections in long-term care populations in the United States. J Am Geriatr Soc 2013;61:342-9. Crossref
    24. European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European long-term care facilities. May-September 2010. Available from: http://www.ecdc.europa.eu/en/publications/_layouts/forms/Publication_DispForm.aspx?List=4f55ad51-4aed-4d32-b960-af70113dbb90&ID=1086. Accessed 31 Dec 2013.
    25. Harris-Kojetin L, Sengupta M, Park-Lee E, Valverde R. Long-term care services in the United States: 2013 overview. Vital Health Stat 3 2013;(37):1-107.
    26. Rodrigues R, Huber M, Lamura G, editors. Facts and figures on healthy ageing and long-term care. European Centre for Social Welfare Policy and Research; 2012. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.1022&rep=rep1&type=pdf. Accessed 22 Jan 2016.
    27. Wójkowska-Mach J, Gryglewska B, Romaniszyn D, et al. Age and other risk factors of pneumonia among residents of Polish long-term care facilities. Int J Infect Dis 2013;17:e37-43. Crossref
    28. Muder RR. Pneumonia in residents of long-term care facilities: epidemiology, etiology, management, and prevention. Am J Med 1998;105:319-30. Crossref
    29. Michel JP, Lesourd B, Conne P, Richard D, Rapin CH. Prevalence of infections and their risk factors in geriatric institutions: a one-day multicentre survey. Bull World Health Organ 1991;69:35-41.
    30. Eriksen HM, Koch AM, Elstrøm P, Nilsen RM, Harthug S, Aavitsland P. Healthcare-associated infection among residents of long-term care facilities: a cohort and nested case-control study. J Hosp Infect 2007;65:334-40. Crossref
    31. Saha S, Chadha M, Al Mamun A, et al. Influenza seasonality and vaccination timing in tropical and subtropical areas of southern and south-eastern Asia. Bull World Health Organ 2014;92:318-30. Crossref
    32. Yang L, Wong CM, Lau EH, Chan KP, Ou CQ, Peiris JS. Synchrony of clinical and laboratory surveillance for influenza in Hong Kong. PLoS One 2008;3:e1399. Crossref

    Breast pain in lactating mothers

    Hong Kong Med J 2016 Aug;22(4):341–6 | Epub 17 Jun 2016
    DOI: 10.12809/hkmj154762
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Breast pain in lactating mothers
    Sophie SF Leung, FHKCPaed, FHKAM (Paediatrics)
    Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong (c/o: Room 1502, 15/F, Hong Kong Pacific Centre, 28 Hankow Road, Tsimshatsui, Hong Kong)
     
    Corresponding author: Dr Sophie SF Leung (dr.leung@ssfl.com.hk)
     
     Full paper in PDF
    Abstract
    Introduction: The number of new mothers who breastfeed has increased dramatically over the last three decades. There is a concern that the present related medical service may be inadequate. Breast pain is the most common complaint among lactating mothers who seek medical help. This study aimed to investigate this problem.
     
    Methods: Medical records of women who presented with breast pain to a private clinic run by a doctor who was trained as an International Lactation Consultant were reviewed over a period of 6 months in 2015. Most patients were self-referred after chatting online. Assessment included characteristics and duration of pain, treatment prior to consultation, feeding practices, mother’s diet, and breast examination. Any site of blockage was identified and relieved. Those with persistent pain were given antibiotics. When there were signs of abscess or abscess that could not be drained, they were referred to a breast surgeon.
     
    Results: A total of 69 patients were seen of whom 45 had been breastfeeding for more than 1 month. Pain was experienced for longer than 7 days in 22 women. Antifungal or antibacterial treatment had been unsuccessful in 31 women prior to consultation. The diagnoses were engorgement in five women, blocked duct in 35, mastitis in 13, breast abscess in six, poor positioning and latch in seven, nipple cracks in two, and skin infection in one. Oral antibiotics were prescribed to 21 patients and local antifungal treatment was given to one patient only.
     
    Conclusion: Blocked duct was the most common cause of breast pain in lactating mothers. Without prompt relief it is possible that it will progress to mastitis/breast abscess or the mother may discontinue breastfeeding. This may be a suitable time for Hong Kong to set up one or more public full-time breastfeeding clinics to provide a better service to lactating mothers and to facilitate professional training and research.
     
    New knowledge added by this study
    • Most breast pain in lactating mothers is not necessarily due to bacterial or fungal infection but due to duct blockage that can be relieved promptly by gentle breast massage and milk expression.
    • Local mothers had a specific dietary practice to encourage milk production that could sometimes be harmful.
    Implications for clinical practice or policy
    • To cope with the increased prevalence of breastfeeding, relevant clinical services should be established, including one or more full-time breastfeeding clinics in the public sector that mothers can attend without the need for medical referral. This will also help in research since local practices and clinical problems may differ to those described in the literature.
     
     
    Introduction
    Hong Kong has experienced a tremendous change in lifestyle and the consequent clinical problems pose a challenge to the medical profession. A good example of this is infant feeding. Almost half a century ago, the prevalence of breastfeeding in Hong Kong was at its lowest rate of 5% in 1978 after a dramatic fall from 44% in 1967.1 Following the joint efforts of doctors, nurses and mothers, the prevalence of the ever breastfeeding rate in Hong Kong has rapidly climbed from 20% in 1992 to 60% in 2002 and 86% in 2014.2 The efforts of both the UNICEF Baby-Friendly Hospital Initiative and the Department of Health should be applauded.
     
    Breast milk is the best for babies. Mothers should be encouraged to breastfeed fully for 6 months, followed by introduction of solid foods and continuation of breastfeeding for 2 years or more. Recent data have shown that only 27% of mothers can sustain breastfeeding for 4 to 6 months.2 There are areas where we, as medical professionals, can provide support. For historical reasons, however, not many local doctors and nurses have been trained to manage the clinical problems encountered by breastfeeding mothers. One such problem is breast pain.
     
    Breast pain, which may lead to cessation of breastfeeding, is the most common complaint of lactating mothers seen in a private general paediatric clinic run by a doctor (author) trained in 2000 as an International Lactation Consultant. This study aimed to analyse the reasons for breast pain and how it can be relieved.
     
    Methods
    Clinical records of lactating mothers who presented with breast pain over a 6-month period (January to June 2015) were retrieved. Patients were self-referred after chatting online with other breastfeeding mothers. During consultation, patients were asked about the history of pain, prior treatment, breastfeeding practices, and their own diet. Breast examination was then performed, including the nipple and areola, to identify any redness or tenderness. In particular, any blockage was identified.
     
    If redness or tenderness was generalised in either or both breasts, it was diagnosed as engorgement (Fig a). If it was confined to a segment, this implied only a lobule was involved. If gentle massage and milk expression provided relief, a blocked duct was diagnosed (Fig b). The ability to express pus (Fig c) or an area of fluctuation or skin thinning (Fig d) was indicative of breast abscess. Mastitis was diagnosed in the presence of fever and tenderness/mass that could not be relieved but had not progressed to an abscess.3 Nipples were examined for cracks (Fig e). Feeding position and latch were checked when appropriate and corrected accordingly. When there was a white spot in the nipple, it was cleared by simple expression or by using a needle to open up the blockage. If there was a shinny reddish colour of the nipple and areola together with burning, stinging, and itchiness then fungal infection was diagnosed. In such case, the baby’s mouth was also examined for the presence of oral thrush.
     

    Figure. (a) General redness of breast due to engorgement. (b) Local area of redness in blocked duct or mastitis. (c) Pus expressed from breast abscess. (d) Bluish area with sign of fluctuation. (e) Cracks in nipple (highlight with mercurochrome solution)
     
    Results
    A total of 69 patients were seen of whom 45 had been breastfeeding for more than 1 month. All except six were in their 30s. The age of the baby was less than 1 month in 24 (35%) women, 1 to 6 months in 27 (39%), and over 6 months in 18 (26%). Only 13 (19%) used complementary infant milk formula.
     
    Breast pain was present for less than 3 days in 35 (51%) women but for longer in the remaining 34 (49%). Pain duration exceeded 7 days in 22 (32%); 15 (22%) of whom had intermittent pain for 14 to 30 days. In 31 (45%) patients, earlier treatment had been received from various sources including Maternal and Child Health Centres (MCHCs), family doctors, general practitioners, obstetricians, doctors at an accident and emergency department, surgeons in a breast surgery clinic, or lactation consultants. Antifungal or antibacterial medication, either local or systemic, was prescribed.
     
    Apart from breast pain, there were other additional complaints: nipple pain in eight (12%) women, sharp needle pain after feeding in eight (12%), white spot at nipple in 15 (22%), and fever in 14 (20%). All had decreased milk production by the affected breast despite frequent feeding or pumping.
     
    The following diagnoses were made: nipple cracks (n=2), poor positioning and latch (n=7), engorgement (n=5), blocked duct (n=35), mastitis (n=13), breast abscess (n=6), and skin infection (n=1). One had all pus drained via the milk duct. Another had pus formed in the sebaceous gland at the areola and was fully drained. The remaining four were referred to a surgeon for further management. Oral antibiotics were prescribed to 21 (30%) women. Fungal infection was suspected in only one woman. Clinical details of four patients chosen for illustration are shown in the Table.
     

    Table. Clinical details of four patients
     
    Discussion
    Subjects in this study represent mothers who were very dedicated to breastfeeding. Most had been breastfeeding for more than 1 month and had not given up, despite experiencing pain for quite a number of days.
     
    Blocked duct/mastitis
    Blocked duct was the most common cause of breast pain in this study group. Delay in diagnosing and treating a blocked duct can lead to a more serious condition of mastitis and breast abscess.
     
    Engorgement, blocked duct, mastitis, and breast abscess reflect progression from a common original problem of inadequate drainage that can be due to poor positioning and latching, inadequate emptying, or overproduction.3 Obtaining a good history, performing a thorough breast examination, and milk expression can help to make the diagnosis.
     
    Engorgement usually involves the whole breast whereas a blocked duct involves a lobule. In the latter, redness and tenderness are apparent and examination of the areola may reveal a tender swelling representing a blockage of the duct near the opening. Gentle massage and milk expression will relieve the pain and tenderness. A simple blocked duct can be relieved immediately. Nonetheless, when the swelling can only be partially relieved, it may represent tissue inflammation indicative of mastitis. Mothers were encouraged to feed more often on the affected breast. If this failed after one or two feeds, antibiotics were prescribed to prevent progression to breast abscess.
     
    Milk is a very good medium for bacterial culture. Stasis of milk for too long may lead to infection (mastitis) and pus formation (abscess). The common guideline is to relieve a blocked duct as soon as possible, especially in the presence of fever. Once fever has persisted for longer than 24 hours, antibiotics are required. In one woman in this study, however, breast abscess was evident within the first few hours of fever and in another woman without fever, thus fever should be considered a non-specific sign. Clinical assessment was the most important. The ratio of breast abscess to mastitis was higher in this series (46.2%) compared with that reported in the literature (11.1%).3 This may have been due to a difference in sampling methods or different diagnostic criteria for mastitis. The difference between a blocked duct and mastitis can be very subtle. Presence of redness and tenderness in the breast with little effort to clear the blockage may be classified as mastitis. What is of more concern is the possible delay in management that allows untreated mastitis to progress to breast abscess. An abscess can be drained through the duct manually, but needle aspiration under ultrasound guidance or incision may be required in some cases. If there is an incision, the wound must be left open for continuous drainage and the mother may be forced to stop breastfeeding.
     
    Since most of these infections are due to Staphylococcus aureus, Streptococcus, or Escherichia coli, antibiotics chosen should be amoxicillin with clavulanate, cloxacillin, or cefuroxime; all of which are compatible with continuation of breastfeeding.3
     
    Nipple pain
    Nipple pain may indicate a blocked duct because the duct beneath the areola is swollen. There should be some tenderness although not as much as that of the affected breast lobule. After relief of the blockage, nipple pain will resolve.
     
    A white spot at the nipple may also indicate a blocked duct. Blockage of a lobule and then stasis of milk at the opening of the duct can lead to further blockage by milk that has a high fat or high calcium content. This spot will be white in colour, sometimes referred to as a bleb. It can be removed by milk expression, needle or local application of vegetable oil. This should not be confused with thrush.
     
    Concern has already been raised about the general overdiagnosis of fungal infection as a cause of breast pain, nipple pain, or white spot.4 Patients treated for a presumed ‘yeast infection’ might have shown improvement in symptoms as a result of the anti-inflammatory effect of the antifungal drugs or because the blocked duct resolved on its own. Fungal infection of the breast and nipple may be considered if a blocked duct has been excluded and is often associated with other risk factors. Examples are consuming a diet with high sugar content that promotes growth of fungus, mother having received antibiotics, a maternal history of vaginal candidiasis, or baby’s oral mucosa with thrush.4 All these risk factors were not found in any of the mothers in this study. Excruciating pain after a feed is a non-specific sign. It is more likely to be due to a blocked duct or inadequate emptying of the breast, as shown in this study. These patients had failed to improve after being given local or systemic antifungal treatment in their previous consultations prior to presentation to this clinic. Pain was relieved only after the blocked duct was cleared.
     
    Diet of lactating mothers
    There was a general misunderstanding among the lactating mothers that eating more animal foods could improve milk supply. Previous studies have shown that the protein intake of local lactating mothers is much higher than that of those in other countries. At 3 months postpartum, Hong Kong mothers had a protein intake of 98 g/day5 compared to 81 g/day in the UK6 and 80 g/day in Japan.7 In the first month after delivery (known locally as the confinement period), the protein intake was even higher (133 g/day)5 than at 3 months. During this month, local mothers usually consume a special diet consisting of much more pork, fish, chicken, egg, and milk.
     
    The practice of eating a special diet with additional animal foods during confinement may be unique to Hong Kong Chinese population and is likely a long Chinese tradition. The original rationale was to replenish the blood loss of childbirth and may have been necessary at a time when the general population had barely enough food. Prior to the 1960s, our ancestors usually ate a plant-based diet, with pork available only in the Chinese New Year or during some festivals. There was very little over-nutrition. Time has changed. The diet of adults today is generally high in animal protein8 and fat. Further increase will lead to new clinical problems, not just weight gain in mothers but also increased risk of blockage and inflammation in breastfeeding mothers. A diet that contains much more meat has been shown to be associated with higher inflammatory index scores9 and one of these is C-reactive protein.10
     
    The quantity and quality of fat in breast milk can be affected by the fat in the maternal diet. Lactating mothers in Chongqing (a major city in Southwest China) consumed a diet wherein fat came from lard. Total fat in the breast milk was higher in Chongqing: 38 g/L compared with 32 g/L in Hong Kong.11 Chongqing mothers did not appear to have problems of blocked ducts or mastitis. Thus, a high-fat diet per se may not cause mastitis, it is the quality of fat that matters. Mothers who consume a diet high in saturated fat may be more prone to duct blockage.3 Mothers with a recurrent blocked duct were often advised to change their diet to one with more polyunsaturated fat or use a supplement, lecithin.3 A dietary source of lecithin is mainly soy or eggs. It would appear to be a good practice for lactating mothers in Chongqing to eat lots of eggs. However, in view of the possibility of egg allergy, Hong Kong mothers may be better advised to eat more soy products. Mothers in this study group appeared to eat very few soy products.
     
    High milk production together with inadequate emptying definitely poses a problem. Many Hong Kong mothers took both Chinese remedies (herbs, fish soups) and drank western teas (eg fenugreek) to increase milk production. Nearly all breastfeeding mothers had a breast pump. Some mothers pumped milk more often to produce an excess for later use. Indeed quite a number of the studied mothers had plenty of stored milk in their refrigerator. Working mothers may have stopped pumping during weekends. Such irregular breast emptying may cause the problem of milk stasis. The presence of fatigue, stress, and an imbalanced diet can encourage inflammation that can easily progress to mastitis. Recurrence of blocked duct/mastitis may occur if the mother’s diet and practice of feeding or pumping are not corrected.
     
    A diet rich in white sugar or corn syrup, pastries, and cakes can enhance the growth of fungus but was generally not observed in our subjects. This may explain why fungal infection was rare. A natural well-balanced diet with whole grains, plenty of vegetables and fruits, and no excessive animal products should be recommended. Refined sugary foods, foods with chemicals, colouring agents, and preservatives should be avoided.
     
    Medical services
    A substantial number of nurses had passed the examination that qualified them as an International Lactation Consultant. They worked mainly in the maternity wards of hospitals and MCHCs in Hong Kong. They were very successful in initiating breastfeeding. Some hospitals ran a breastfeeding clinic to support mothers after discharge from the maternity ward but they were not available round the clock. Most mothers with breastfeeding problems attended a MCHC to seek for help. Other mothers chose to see their family doctors. In general, doctors had little training in dealing with problems related to breastfeeding. In 2011, the Department of Health produced a self-learning kit on breastfeeding for any doctor who was interested, but it is difficult for the public to identify such doctors.
     
    Breast pain can sometimes be unbearable. Some patients described it as worse than labour pain. It is unknown from this study how many mothers had stopped breastfeeding because of the pain or how many ended up in hospital with a high fever and abscess that required surgery. Many patients in this study stated that after earlier treatment failed, they had no idea where else to seek further help. Others hesitated to seek medical help because they were afraid they would be told to stop breastfeeding. The mothers in this study were perhaps exceptional. They had tried very hard to find a solution for their pain even though it might have taken a number of days. These mothers deserve a better medical service. The Secretary for Food and Health has stated that the government is very supportive of breastfeeding and is ready to collaborate with health care professional bodies or non-governmental organisations in training personnel and promoting breastfeeding.12 Setting up breastfeeding clinics is the correct approach. These clinics can be run by MCHCs or a Baby-Friendly Hospital and should be full time and open to all. Doctors and lactation consultants can accumulate clinical experience faster and can then act as professional trainers. There is also a need for more local research on the diet and health of lactating mothers, especially those in confinement, so that appropriate education can be delivered to doctors, lactation consultants, midwives, peer counsellors, confinement nannies, and the public.
     
    This study was limited by its retrospective nature. There was a lack of standard protocols for data recording and retrieval. Not all women were followed up to determine if they had completely recovered since it is difficult to do so in a private clinic. What is certain is that those with engorgement and a blocked duct felt immediate relief the moment they left the clinic. It is also quite possible that many cases of breast pain were treated by other doctors and lactation consultants. The data of this study may thus not be representative of Hong Kong in general.
     
    Conclusion
    Blocked duct was the most common cause of breast pain in lactating mothers. Without prompt relief it may progress to mastitis/breast abscess or the mother may choose to stop breastfeeding. It may be a suitable time for Hong Kong to set up one or more public full-time breastfeeding clinics in order to provide a better service for lactating mothers and to facilitate professional training and research.
     
    Declaration
    The author has disclosed no conflicts of interest.
     
    References
    1. Baber FM. The current situation in Hong Kong. Hong Kong Pract 1981;5:132-7.
    2. Baby-Friendly Hospital Initiative Hong Kong Association. Available from: http://www.babyfriendly.org.hk/en/breastfeeding-in-hk/breastfeeding-trend/. Accessed Feb 2016.
    3. Lawrence RA, Lawrence RM. Breast feeding: a guide for the medical profession. 5th ed. St Louis: Mosby; 1999: 273-83.
    4. Wilson-Clay B, Hoover K. The breastfeeding atlas. 5th ed. US: LactNews Press; 2013: 57-8.
    5. Chan SM, Nelson EA, Leung SS, Cheng JC. Bone mineral density and calcium metabolism of Hong Kong Chinese postpartum women—a 1-y longitudinal study. Eur J Clin Nutr 2005;59:868-76. Crossref
    6. Black AE, Wiles SJ, Paul AA. The nutrient intakes of pregnant and lactating mothers of good socio-economic status in Cambridge, UK: some implications for recommended daily allowances of minor nutrients. Br J Nutr 1986;56:59-72. Crossref
    7. Takimoto H, Yoshiike N, Katagiri A, Ishida H, Abe S. Nutritional status of pregnant and lactating women in Japan: a comparison with non-pregnant/non-lactating controls in the National Nutrition Survey. J Obstet Gynaecol Res 2003;29:96-103. Crossref
    8. Leung SS, Woo J, Ho S, Lam TH, Janus ED. Hong Kong dietary survey. Aust J Nutr Diet 1988;55(Suppl):S11-4.
    9. Morimoto Y, Beckford F, Cooney RV, Franke AA, Maskarinec G. Adherence to cancer prevention recommendations and antioxidant and inflammatory status in premenopausal women. Br J Nutr 2015;114:134-43. Crossref
    10. Turner-McGrievy GM, Wirth MD, Shivappa N, et al. Randomization to plant-based dietary approaches leads to larger short-term improvements in Dietary Inflammatory Index scores and macronutrient intake compared with diets that contain meat. Nutr Res 2015;35:97-106. Crossref
    11. Chen ZY, Kwan KY, Tong KK, Ratnayake WM, Li HQ, Leung SS. Breast milk fatty acid composition: a comparative study between Hong Kong and Chongqing Chinese. Lipids 1997;32:1061-7. Crossref
    12. Hong Kong Paediatric Society, Hong Kong Paediatric Foundation. Summit on Breastfeeding and Early Childhood Nutrition in the First 1000 Days 2015; Abstract: 18.

    Managing malignant pleural effusion with an indwelling pleural catheter: factors associated with spontaneous pleurodesis

    Hong Kong Med J 2016 Aug;22(4):334–40 | Epub 3 Jun 2016
    DOI: 10.12809/hkmj154673
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Managing malignant pleural effusion with an indwelling pleural catheter: factors associated with spontaneous pleurodesis
    WM Wong, FHKCP, FHKAM (Medicine); Terence CC Tam, FHKCP, FHKAM (Medicine); Matthew KY Wong, MB, BS, FRCP; Macy MS Lui, FHKCP, FHKAM (Medicine); Mary SM Ip, MD, FRCP; David CL Lam, MD, FRCP
    Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
     
    Corresponding author: Dr David CL Lam (dcllam@hku.hk)
     
     Full paper in PDF
    Abstract
    Introduction: Malignant pleural effusion can be recurrent despite active anti-cancer treatment. Significant malignant pleural effusion leads to debilitating dyspnoea and worsening quality of life in patients with advanced cancer. An indwelling pleural catheter offers a novel means to manage recurrent malignant pleural effusion and may remove the need for repeated thoracocentesis. Spontaneous pleurodesis is another unique advantage of indwelling pleural catheter placement but the factors associated with its occurrence are not clearly established. The aims of this study were to explore the safety of an indwelling pleural catheter in the management of symptomatic recurrent malignant pleural effusion, and to identify the factors associated with spontaneous pleurodesis.
     
    Methods: This case series with internal comparisons was conducted in the Division of Respiratory Medicine, Department of Medicine, Queen Mary Hospital, Hong Kong. All patients who underwent insertion of an indwelling pleural catheter from the initiation of such service from January 2010 to December 2014 were included for data analysis. Patients were monitored until December 2014, with the last catheter inserted in July 2014.
     
    Results: Between 2010 and 2014, a total of 23 indwelling pleural catheters were inserted in 22 consecutive patients with malignant pleural effusion, including 15 (65.2%) cases with malignant pleural effusion as a result of metastatic lung cancer. Ten (43.5%) cases achieved minimal output according to defined criteria, in five of whom the pleural catheter was removed without subsequent re-accumulation of effusion (ie spontaneous pleurodesis). Factors associated with minimal output were the absence of trapped lung (P=0.036), shorter time from first appearance of malignant pleural effusion to catheter insertion (P=0.017), and longer time from catheter insertion till patient’s death or end of study (P=0.007).
     
    Conclusions: An indwelling pleural catheter provides a safe means to manage symptomatic malignant pleural effusion. Potential clinical factors associated with minimal output were identified along with the occurrence of spontaneous pleurodesis, which is a unique advantage offered by indwelling pleural catheter.
     
    New knowledge added by this study
    • An indwelling pleural catheter (IPC) offers a new and safe management option for symptomatic malignant pleural effusion (MPE).
    • Potential clinical factors associated with spontaneous pleurodesis were identified.
    Implications for clinical practice or policy
    • IPC is a safe management option for MPE.
    • In addition to drainage of effusion, the use of an IPC may be followed by spontaneous pleurodesis that obviates the need for any additional chemical sclerosant.
     
     
    Introduction
    Malignant pleural effusion (MPE) develops in up to 50% of patients with advanced lung cancer1 and can also develop in metastatic pleural involvement from non-pulmonary cancers. Such complication can be recurrent despite active anti-cancer treatment and thus difficult to manage.1 Significant MPE leads to debilitating dyspnoea and worsening quality of life in patients with terminal cancer.2 Conventional management options of MPE include thoracocentesis, chest tube drainage, and chemical and surgical pleurodesis.3 Nonetheless, MPE often recurs and necessitates repeated thoracocentesis or chest tube drainage.4 Chemical pleurodesis via an intercostal chest tube may entail prolonged hospitalisation and despite initial ‘success’, MPE often recurs a few months later.5 Surgical pleurodesis is often too invasive for frail cancer patients.6 Systemic anti-cancer treatment may reduce MPE but there is no guarantee of success.7 To secure symptom relief and to minimise repeated interventions and hospitalisation in refractory MPE was a constant challenge, until an indwelling pleural catheter (IPC) became more commonly used.8
     
    An IPC is intended to be left in situ in the pleural cavity permanently in patients with advanced cancer. Insertion is under local anaesthesia, and supplemented with conscious sedation if needed. An IPC is a silicon catheter with a polyester cuff for anchoring the catheter at the subcutaneous tunnel that serves to reduce infection. At the end of the external portion of the catheter is a silicone valve that remains closed unless connected to a designated drainage line or vacuum bottle. Vacuum bottles are not reusable and are discarded after each episode of drainage. Patients are usually advised to have IPC drainage every 1 or 2 days, especially when output remains substantial. In addition, drainage should be done whenever symptoms of MPE occur (Fig).
     

    Figure. (a) An indwelling pleural catheter (IPC) kit (Rocket Medical, UK). (b) Connecting different parts of IPC. (c) IPC inserted in a patient
     
    The guidelines for management of MPE published by the British Thoracic Society suggest that IPC is an alternative option for patients whose estimated survival exceeds 1 month and who have either a trapped lung or recurrent pleural effusion following a trial of pleurodesis.3 First-line use of IPC in patients who have no previous trial of pleurodesis has also been shown to be superior to talc pleurodesis with subjects being less dyspnoeic at 6 months, and less likely to need further pleural procedures, and reduced hospital stay by 3.5 days.9 Another prospective open-label trial that compared IPC with talc slurry pleurodesis as first-line treatment for MPE also demonstrated that first-line use of IPC conferred non-inferior improvement in dyspnoea and quality of life, reduced effusion-related hospital stay by 7 to 11 days, and required less subsequent pleural procedures compared with talc slurry pleurodesis.10 Research has shown that IPC is a safe procedure, with no complications in 87.5% (range, 54.5-100%) of patients.11 Although the IPC is designed to be left permanently in situ in the pleural cavity in patients with advanced cancer, one unique advantage of IPC is the occurrence of autopleurodesis or spontaneous pleurodesis (SP)—ie pleurodesis achieved following IPC insertion without the use of sclerosant. The achievement of SP may enable consequent removal of the IPC. The pooled rate of SP in MPE patients has been reported to be 45.6%,11 achieved after a mean duration of 26 to 56 days after IPC insertion.11 12 13 14 15 16 17 18 19 20 The possibility of SP is attractive as there is a chance that an IPC will no longer be required. The aims of this study were to review our single-centre experience of the safety of IPC in the management of symptomatic MPE and to explore the potential clinical factors associated with SP. To our knowledge, this is the first IPC study published in Hong Kong.
     
    Methods
    All patients who underwent IPC insertion at the Division of Respiratory Medicine, Department of Medicine, Queen Mary Hospital since initiation of the IPC service in January 2010 up to December 2014 were included for data analysis. Patients and data were followed up until December 2014, with the last IPC inserted in July 2014. The study was approved by the University of Hong Kong/Hong Kong Hospital Authority Hong Kong West Cluster Institutional Review Board/Ethics Committee (HKU/HAHO HKWC IRB/EC UW13-581) and informed consent was obtained from patients.
     
    An IPC was inserted in patients with MPE who had trapped lung or prior failed pleurodesis or persistent high effusion output from a chest drain and a high chance of pleurodesis failure, or in patients who preferred IPC as their first-line management of MPE. The IPC kits (Rocket Medical, UK) were used and IPCs were inserted in the endoscopy room under local anaesthesia supplemented with conscious sedation if needed.
     
    The electronic patient records, in-patient records, chest radiographs, and drainage diaries were retrospectively reviewed. Data regarding patient demographics, primary malignancy, cancer treatment, history of thoracic irradiation, number and type of prior pleural procedures, indications for IPC, serum albumin level before IPC insertion, laboratory analysis of pleural fluid obtained prior to IPC insertion, and IPC-related complications and admissions were collected and evaluated. ‘Massive effusion’ was defined as more than two thirds of the hemithorax. Effusion less than or equal to two thirds of the hemithorax was defined as ‘non-massive effusion’. Trapped lung was clinically diagnosed when chest X-ray showed an incompletely re-expanded lung despite adequate drainage and suction, together with a compatible tumour status predisposing to trapped lung (eg endobronchial tumour). The number of IPCs inserted, instead of the number of patients, was used for analysis in this study unless otherwise specified.
     
    Although IPC removal could be considered when SP was achieved clinically, there were patients who achieved minimal IPC output in whom IPC was not removed due to other clinical considerations or patient preference. Hence, the rate of SP would be underestimated if only IPC removal of the basis of minimal output was considered to reflect SP. Therefore, in this study patients were deemed to have achieved ‘minimal output’ if there was a persistently reduced IPC output of ≤50 mL per day on average that was not secondary to IPC complications, and regardless of whether the IPC was removed or kept in situ. Patients who persistently had an average IPC output that exceeded 50 mL per day, or had little output due to IPC complications (eg blocked IPC or significant pleural loculation) were defined as the ‘persistent output’ group. As achievement of SP did not necessarily infer IPC removal, because of patient preference and/or other considerations, the endpoint ‘minimal output’ was used for analysis of factors associated with SP.
     
    The IBM PASW statistical software version 20 was used for data analysis. Association of clinical factors with outcome was analysed with Fisher’s exact test, independent sample t tests, and Mann-Whitney test where appropriate. Shapiro-Wilk tests were used to check for normal distribution of individual continuous variables. As minimal output was a dichotomous variable, the point-biserial correlation method was used for association analysis between minimal output and other factors that were continuous variables. The P values were two-sided and were considered statistically significant if <0.05.
     
    Results
    A total of 23 IPCs were inserted in 22 consecutive patients with symptomatic MPE. Insertion of 15 (65.2%) IPCs were in patients with MPE from metastatic lung cancer. A further six were inserted for MPE from metastatic breast cancer and two in patients with MPE from metastatic colon cancer. The characteristics of patients are shown in Table 1. The mean (± standard error of the mean) duration of follow-up was 33.3 ± 28.1 weeks.
     

    Table 1. Summary of characteristics of subjects included in this study (n=23)
     
    Patients were admitted for symptomatic MPE or elective IPC insertion. Patients were able to be discharged with a mean of 4 days following IPC insertion. Ambulatory IPC drainage via vacuum bottles was performed by patients and/or their carers, except one patient who was attended by outreach nurses of the palliative care team.
     
    Complications related to IPC occurred in 10 (43.5%) cases (Table 2). Site infection and wound infection following IPC removal were minor and all resolved after a course of oral antibiotics without the need for hospitalisation. Tumour seeding at the IPC tract was successfully treated by local radiotherapy. Two patients had symptomatic loculated effusion following IPC insertion and required intrapleural fibrinolytics: only one of them improved. Complications necessitated removal of two IPCs. One patient developed empyema 6 months after IPC insertion. Pseudomonas aeruginosa was persistently isolated from pleural fluid despite appropriate antibiotics; infection resolved following IPC removal. Another patient developed intractable cough and it was suspected that her IPC was trapped at the right oblique fissure causing irritation. Cough improved following IPC removal. There were six IPC complication–related hospitalisations (either clinical or emergency admissions) in three patients: the two patients with symptomatic loculations on the IPC requiring fibrinolytics and the patient with empyema mentioned above.
     

    Table 2. Complications related to indwelling pleural catheter (IPC) in this study (n=23)
     
    A total of 10 patients achieved minimal output: IPC was removed in five (21.7%) without subsequent effusion re-accumulation and the other five patients achieved minimal output but retained their IPC. In another two patients, IPC was removed because of complications as mentioned before. No difficulties were encountered during any IPC removal.
     
    Significant factors associated with minimal output were the absence of trapped lung (P=0.036), shorter time from first appearance of MPE to IPC insertion (24.5 ± 24.2 weeks in persistent output group vs 5.75 ± 4.91 weeks in minimal output group; P=0.017), and longer time from IPC insertion till patient’s death or end of study (whichever was earlier; 20.2 ± 19.5 weeks in persistent output group vs 50.3 ± 29.2 weeks in minimal output group; P=0.007; Table 3).
     

    Table 3. Association of clinical factors with minimal output by bivariate analysis
     
    Discussion
    In this small series of 22 patients with 23 IPCs, mainly minor complications were encountered. A serious IPC complication, namely empyema, occurred in one (4.3%) case who was successfully treated with antibiotics and removal of IPC without serious consequences. Insertion of IPC is considered a relatively safe procedure: up to 87.5% (range, 54.5-100%) of patients have no complications following the insertion.11 Complications reported in the literature include local pain (0.4-13%), bleeding (0-0.9%), pneumothorax (0-38%), cellulitis at exit site (1.3-25%), pleural infection (0-16.7%), asymptomatic loculations (4-7.3%), symptomatic loculations (2-13.5%), IPC tract metastasis (0-13.6%), clogged catheter (0-17.6%), IPC dislodgement (1.3-17.7%), and fractured IPC during removal (9.8%). Previous studies suggest that up to 20.6% (range, 1.6-20.6%) of IPCs need to be removed due to complications.9 10 11 14 15 21 22 Nonetheless, serious complications are uncommon; the most common being pleural infection (0-16.7%).23 The TIME2 study reported that the risk of pleural infection was 13.4% in the IPC group compared with 1.9% in the talc slurry pleurodesis group.9 Chemotherapy is not regarded as a contra-indication to IPC, or vice versa. No increased risk of pleural infection has been observed in patients who receive chemotherapy with an IPC in situ.24 Symptomatic loculations following IPC insertion is another relatively significant complication, as they often necessitate admission for management such as intrapleural fibrinolysis or other pleural procedure.
     
    When the daily IPC output reduces to a certain level (the exact ‘amount’ remains arbitrary), IPC removal can be considered and SP is achieved if there is no significant re-accumulation following IPC removal. In reality, some patients had little IPC output but the catheter was left in situ due to other clinical considerations. The rate of SP could be underestimated if it was solely reflected by the ultimate rate of IPC removal, hence ‘minimal output’ was used in this study as the surrogate of SP during analysis of factors that contributed to SP.
     
    We determined that absence of trapped lung, shorter time from first appearance of MPE to IPC insertion, and longer time from IPC insertion till patient’s death or end of study were associated with minimal output. Trapped lung unsurprisingly led to a higher chance of persistent output. Nonetheless, it has been observed that patients with IPC inserted for trapped lung can still achieve SP,12 15 17 18 20 or their lung expansion will improve after IPC.17 In our cohort, two patients had their trapped lung re-expanded after IPC insertion; one of whom had IPC removed successfully without re-accumulation of effusion.
     
    It appears from this study that a shorter time from MPE to IPC insertion could be associated with the achievement of a minimal output state. This could imply that the earlier an IPC is inserted, the better chance of achieving minimal output or even SP. Both a history of multiple pleural procedures (which was arbitrarily defined in this study as requiring two or more episodes of pleurocentesis or chest drainage) and a history of failed pleurodesis were usually indicative of refractory or difficult-to-manage MPE.25 It has never been ascertained whether earlier IPC insertion rather than repeated attempts at pleurocentesis or pleurodesis will increase the chance of SP with IPC. Both factors were not significantly associated with minimal output in our small cohort. Further studies are required to investigate whether prompt insertion of IPC as soon as possible after development of MPE will improve the likelihood of SP.
     
    Patients who achieved minimal output had a longer time from IPC insertion until death or end of study (20.2 ± 19.5 weeks in the persistent output group vs 50.3 ± 29.2 weeks in the minimal output group; P=0.007). Minimal output may be a marker of overall disease control. Lung cancer was the underlying pathology in eight of the 10 subjects who achieved minimal output, of whom six had adenocarcinoma and were prescribed targeted therapy and chemotherapy. Whether the concomitant use of anti-cancer treatments for these lung cancer patients contributed to longer survival following IPC insertion could not be established from this small cohort of lung cancer patients. Comparison with non–lung cancer patients with IPC in this study could not be made as patients with metastatic breast or colorectal tumour with MPE had different treatment strategies. As at December 2014, only four of the 22 patients were still living. They were patients with adenocarcinoma of the lung on palliative chemotherapy/tyrosine kinase inhibitors. Among these four patients, one had her IPC removed earlier due to SP achievement, two had IPC removed earlier due to IPC-related complications, and one still had IPC in situ with persistent output.
     
    Minimal output was used as a surrogate of SP in this study rather than actual IPC removal in the hope that it would better reflect what clinical factors contribute to SP. Comparison of time from IPC insertion to minimal output achievement in those five patients whose IPCs were ultimately removed and the five patients in whom IPC remained in situ despite minimal output revealed no significant difference (30 [interquartile range, 15-59] days vs 23 [standard error of the mean, 6.63] days). Nonetheless, one must not ignore the reasons for non-removal of IPC despite minimal output since they impact the ultimate goal of IPC removal. In this study, there were five patients who achieved minimal output but in whom IPCs remained in situ due to various reasons: poor performance state and short life expectancy, undergoing cycles of chemotherapy, or patient preferences.
     
    This study was limited by the very small sample size and its retrospective nature. There were missing data and the dichotomous groupings, eg IPC drainage every 1 to 2 days versus less frequent, were crude and arbitrary. For example, more-frequent IPC drainage to increase the chance of pleural apposition may theoretically increase the chance of SP, although in this study IPC drainage every 1 to 2 days versus less frequent was not associated with minimal output. This could be related to the crude grouping of the IPC drainage frequency due to the retrospective design of this study that did not allow us to properly allocate the IPC drainage schedule. Further studies to identify modifiable clinical factors that may facilitate SP would be particularly meaningful.
     
    Conclusions
    Insertion of IPC was shown to be a safe technique in the management of symptomatic MPE. Potential factors associated with minimal output, which may predict SP, were absence of trapped lung, shorter time from first appearance of MPE to IPC insertion, and longer time with IPC. Validation by further studies is required owing to the small number of subjects in this study. More data are needed regarding modifiable factors that contribute to achievement of minimal output, as the removal of IPC offers further enhancement of quality of life.
     
    Acknowledgement
    The authors would like to thank Ms Crystal Kwan for assistance in statistical analysis.
     
    Declaration
    All authors have disclosed no conflicts of interest.
     
    References
    1. Shaw P, Agarwal R. Pleurodesis for malignant pleural effusions. Cochrane Database Syst Rev 2004;(1):CD002916. Crossref
    2. Lorenzo MJ, Modesto M, Pérez J, et al. Quality-of-Life assessment in malignant pleural effusion treated with indwelling pleural catheter: a prospective study. Palliat Med 2014;28:326-34. Crossref
    3. Roberts ME, Neville E, Berrisford RG, Antunes G, Ali NJ; BTS Pleural Disease Guideline Group. Management of a malignant pleural effusion: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010;65 Suppl 2:ii32-40. Crossref
    4. de Andrade FM. The role of indwelling pleural catheter in management of malignant pleural effusion: A creative new technique for an old method. Lung India 2015;32:81-2.
    5. Penz ED, Mishra EK, Davies HE, Manns BJ, Miller RF, Rahman NM. Comparing cost of indwelling pleural catheter vs talc pleurodesis for malignant pleural effusion. Chest 2014;146:991-1000. Crossref
    6. Bhatnagar R, Kahan BC, Morley AJ, et al. The efficacy of indwelling pleural catheter placement versus placement plus talc sclerosant in patients with malignant pleural effusions managed exclusively as outpatients (IPC-PLUS): study protocol for a randomised controlled trial. Trials 2015;16:48. Crossref
    7. Massarelli E, Onn A, Marom EM, et al. Vandetanib and indwelling pleural catheter for non–small-cell lung cancer with recurrent malignant pleural effusion. Clin Lung Cancer 2014;15:379-86. Crossref
    8. Fysh ET, Thomas R, Read CA, et al. Protocol of the Australasian Malignant Pleural Effusion (AMPLE) trial: a multicentre randomised study comparing indwelling pleural catheter versus talc pleurodesis. BMJ Open 2014;4:e006757. Crossref
    9. Davies HE, Mishra EK, Kahan BC, et al. Effect of an indwelling pleural catheter vs chest tube and talc pleurodesis for relieving dyspnea in patients with malignant pleural effusion: the TIME2 randomized controlled trial. JAMA 2012;307:2383-9. Crossref
    10. Fysh ET, Waterer GW, Kendall PA, et al. Indwelling pleural catheters reduce inpatient days over pleurodesis for malignant pleural effusion. Chest 2012;142:394-400. Crossref
    11. Van Meter ME, McKee KY, Kohlwes RJ. Efficacy and safety of tunneled pleural catheters in adults with malignant pleural effusions: a systematic review. J Gen Intern Med 2011;26:70-6. Crossref
    12. Warren WH, Kalimi R, Khodadadian LM, Kim AW. Management of malignant pleural effusions using the Pleurx catheter. Ann Thorac Surg 2008;85:1049-55. Crossref
    13. Warren WH, Kim AW, Liptay MJ. Identification of clinical factors predicting Pleurx catheter removal in patients treated for malignant pleural effusion. Eur J Cardiothorac Surg 2008;33:89-94. Crossref
    14. Sioris T, Sihvo E, Salo J, Räsänen J, Knuuttila A. Long-term indwelling pleural catheter (PleurX) for malignant pleural effusion unsuitable for talc pleurodesis. Eur J Surg Oncol 2009;35:546-51. Crossref
    15. Tremblay A, Michaud G. Single-center experience with 250 tunnelled pleural catheter insertions for malignant pleural effusion. Chest 2006;129:362-8. Crossref
    16. Bertolaccini L, Viti A, Gorla A, Terzi A. Home-management of malignant pleural effusion with an indwelling pleural catheter: ten years experience. Eur J Surg Oncol 2012;38:1161-4. Crossref
    17. Schneider T, Reimer P, Storz K, et al. Recurrent pleural effusion: who benefits from a tunneled pleural catheter? Thorac Cardiovasc Surg 2009;57:42-6. Crossref
    18. Al-Halfawy A, Light R. Safety and efficacy of using a surgivac pump for the drainage of chronic indwelling pleural catheters in malignant pleural effusions. Respirology 2008;13:461-4. Crossref
    19. Bazerbashi S, Villaquiran J, Awan MY, Unsworth-White MJ, Rahamim J, Marchbank A. Ambulatory intercostal drainage for the management of malignant pleural effusion: a single center experience. Ann Surg Oncol 2009;16:3482-7. Crossref
    20. Ohm C, Park D, Vogen M, et al. Use of an indwelling pleural catheter compared with thoracoscopic talc pleurodesis in the management of malignant pleural effusions. Am Surg 2003;69:198-202.
    21. Tremblay A, Mason C, Michaud G. Use of tunnelled catheters for malignant pleural effusions in patients fit for pleurodesis. Eur Respir J 2007;30:759-62. Crossref
    22. Fysh ET, Wrightson JM, Lee YC, Rahman NM. Fractured indwelling pleural catheters. Chest 2012;141:1090-4. Crossref
    23. Gilbert CR, Lee HJ, Akulian JA, et al. A quality improvement intervention to reduce indwelling tunneled pleural catheter infection rates. Ann Am Thorac Soc 2015;12:847-53. Crossref
    24. Mekhaiel E, Kashyap R, Mullon JJ, Maldonado F. Infections associated with tunnelled indwelling pleural catheters in patients undergoing chemotherapy. J Bronchology Interv Pulmonol 2013;20:299-303. Crossref
    25. Fysh ET, Bielsa S, Budgeon CA, et al. Predictors of clinical use of pleurodesis and/or indwelling pleural catheter therapy for malignant pleural effusion. Chest 2015;147:1629-34. Crossref

    Impact of 18FDG PET and 11C-PIB PET brain imaging on the diagnosis of Alzheimer’s disease and other dementias in a regional memory clinic in Hong Kong

    Hong Kong Med J 2016 Aug;22(4):327–33 | Epub 17 Jun 2016
    DOI: 10.12809/hkmj154707
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Impact of 18FDG PET and 11C-PIB PET brain imaging on the diagnosis of Alzheimer’s disease and other dementias in a regional memory clinic in Hong Kong
    YF Shea, MRCP, FHKAM (Medicine)1; Joyce Ha, BSc1; SC Lee, BHS (Nursing)1; LW Chu, MD, FRCP1,2
    1 Division of Geriatrics, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
    2 The Alzheimer’s Disease Research Network, SRT Ageing, The University of Hong Kong, Pokfulam, Hong Kong
     
    Corresponding author: Dr YF Shea (elphashea@gmail.com)
     
     Full paper in PDF
    Abstract
    Objective: This study investigated the improvement in the accuracy of diagnosis of dementia subtypes among Chinese dementia patients who underwent [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography (18FDG PET) with or without carbon 11–labelled Pittsburgh compound B (11C-PIB).
     
    Methods: This case series was performed in the Memory Clinic at Queen Mary Hospital, Hong Kong. We reviewed 109 subjects (56.9% were female) who received PET with or without 11C-PIB between January 2007 and December 2014. Data including age, sex, education level, Mini-Mental State Examination score, Clinical Dementia Rating scale score, neuroimaging report, and pre-/post-imaging clinical diagnoses were collected from medical records. The agreement between the initial and post-PET with or without 11C-PIB dementia diagnosis was analysed by the Cohen’s kappa statistics.
     
    Results: The overall accuracy of initial clinical diagnosis of dementia subtype was 63.7%, and diagnosis was subsequently changed in 36.3% of subjects following PET with or without 11C-PIB. The rate of accurate initial clinical diagnosis (compared with the final post-imaging diagnosis) was 81.5%, 44.4%, 14.3%, 28.6%, 55.6% and 0% for Alzheimer’s disease, dementia with Lewy bodies, frontotemporal dementia, vascular dementia, other dementia, and mixed dementia, respectively. The agreement between the initial and final post-imaging dementia subtype diagnosis was only fair, with a Cohen’s kappa of 0.25 (95% confidence interval, 0.05-0.45). For the 21 subjects who underwent 11C-PIB PET imaging, 19% (n=4) of those with Alzheimer’s disease (PIB positive) were initially diagnosed with non–Alzheimer’s disease dementia.
     
    Conclusions: In this study, PET with or without 11C-PIB brain imaging helped improve the accuracy of diagnosis of dementia subtype in 36% of our patients with underlying Alzheimer’s disease, dementia with Lewy bodies, vascular dementia, and frontotemporal dementia.
     
    New knowledge added by this study
    • Positron emission tomography (PET) with or without Pittsburgh compound B (PIB) brain imaging helps improve the accuracy of dementia subtype diagnosis in Chinese patients.
    Implications for clinical practice or policy
    • PET with or without PIB brain imaging should be considered in patients with dementia who attend the memory clinic, especially if there is diagnostic difficulty.
     
     
    Introduction
    With ageing of the world’s population, the prevalence of dementia increases: 46.8 million people worldwide were living with dementia in 2015. This is projected to reach 74.7 million in 2030 and 131.5 million in 2050, with 60% suffering from Alzheimer’s disease (AD).1 In Hong Kong, the prevalence of mild dementia has been reported to be 8.9% for adults aged 70 years or over, with 64.6% suffering from AD.2 Appropriate management of demented patients begins with correct diagnosis of dementia subtype that allows earlier implementation of disease-specific treatment. In particular, cholinesterase inhibitors (ChEIs) or N-methyl-D-aspartate receptor antagonists are mostly suitable for the treatment of AD. The current clinical diagnostic guidelines for various types of dementia have limited sensitivities and specificities, however. The sensitivity and specificity of clinical diagnostic criteria for AD, dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) have been reported as 81% and 70%, 50% and 80%, 85% and 95%, respectively.3 4 5 6 In the most recent diagnostic criteria for AD, additional use of biomarkers of AD has been recommended by the National Institute on Aging and Alzheimer’s Association to improve the accuracy of AD diagnosis.3 Biomarkers for the diagnosis of AD include cerebrospinal fluid (CSF), amyloid pathological imaging (eg carbon 11–labelled Pittsburgh compound B [11C-PIB] positron emission tomography [PET]), and functional imaging (eg [18F]-2-fluoro-2-deoxy-D-glucose [18F-FDG] PET) that yield sensitivities and specificities of at least 90% and 85%, respectively in the diagnosis of AD, DLB, and FTD.3 7 8 9 10 11 Because of the invasive nature of lumbar puncture in the collection of CSF, neuroimaging modalities such as 18F-FDG PET and 11C-PIB PET are more accepted in routine clinical practice to improve the diagnosis of dementia subtype.
     
    The most common functional neuroimaging is with 18F-FDG12 and the most common pathological neuroimaging is with 11C-PIB.13 These molecular imaging markers are imaged using PET. The 18F-FDG measures metabolic activity of the brain; 18F-FDG PET distinguishes well between AD and non-AD dementia.11 In a systematic review, the sensitivity and specificity for 18F-FDG PET in distinguishing between AD and DLB was 83%-99% and 71%-93%, respectively; and the sensitivity and specificity for 18F-FDG PET in distinguishing between AD and FTD was 97.6%-99% and 65%-86%, respectively.11 In the same systematic review, 18F-FDG PET predicted patients with mild cognitive impairment (MCI) deteriorating into dementia with sensitivity and specificity of 81%-82% and 86%-90%, respectively.11 Besides, 11C-PIB can detect the presence of fibrillar amyloid plaques that are a neuropathological marker of AD.13 Correlation studies with neuropathology have shown a sensitivity of 90% and specificity of 100%; 11C-PIB can reasonably distinguish AD from other types of dementia, eg FTD.13 Using neuropathology as the gold standard, the sensitivity and specificity was 89% and 83%, respectively.13 The presence of 11C-PIB retention also predicts the progression of patients with MCI: 50% progress to AD in 1 year and 80% progress to AD within 3 years.14
     
    Previous studies with 18F-FDG and 11C-PIB PET have focused on highly selected diagnostic groups, and only a few studies have studied their impact in the routine clinical setting of a memory clinic at a tertiary university hospital. The latter are referral centres, and often encounter patients with complicated diagnostic issues. Ossenkoppele et al15 reported a cohort of 145 patients who underwent 18F-FDG and 11C-PIB PET after clinical assessment. Change in clinical diagnosis was required in 23% with the diagnostic confidence increased from a mean of 71% to 87%. Diagnosis remained unchanged in 96% after PET over the next 2 years.15 In seven patients with MCI and positive amyloid deposition on 11C-PIB PET, six progressed to AD during follow-up (5 had AD pattern of hypometabolism on 18F-FDG PET).15 In a retrospective study of 94 patients with MCI or dementia, Laforce et al16 showed that 18F-FDG PET brain scan led to a change in diagnosis in 29% of patients, and reduced the frequency of atypical or unclear diagnoses from 39.4% to 16%.
     
    To the best of our knowledge, there are no published data on the impact of molecular neuroimaging on accuracy of diagnosis of AD or other dementias in the Chinese population. We hypothesised that brain 18F-FDG with or without 11C-PIB PET imaging can improve the accuracy of diagnosis of common dementia subtypes in a memory clinic. The objective of this study was to investigate the impact of brain 18F-FDG with or without 11C-PIB imaging in improving the accuracy of diagnosis of dementia subtype in a local memory clinic in Hong Kong.
     
    Methods
    This was a retrospective study conducted at the Memory Clinic of Queen Mary Hospital, the University of Hong Kong. Patients were referred by general practitioners, neurologists, geriatricians, surgeons, or psychiatrists. All patient records between January 2007 and December 2014 were reviewed. Inclusion criteria were a clinical diagnosis of MCI, dementia of any type, or unclassifiable dementia; and 18F-FDG with or without 11C-PIB PET performed within 3 months after the initial clinical diagnosis. The initial clinical assessment was performed by a geriatrician experienced in dementia care and included detailed history taking from primary carers of the patient, physical examination, cognitive assessment, and laboratory studies (including thyroid function test, vitamin B12 level, folate level, and syphilis serology [Venereal Disease Research Laboratory]). Clinical criteria for AD, FTD, DLB, and vascular dementia (VaD) were employed to establish the clinical diagnosis initially, without using any biomarker. The diagnosis of different dementia subtype before neuroimaging was based on the respective diagnostic guidelines. Patients with AD were diagnosed according to the NINCDS-ADRDA (National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association) diagnostic criteria.17 Patients with DLB were diagnosed by the McKeith criteria.4 Behavioural variant (bv) of FTD was diagnosed by revised diagnostic criteria reported by the International bvFTD Criteria Consortium5 and language variant of FTD was diagnosed by latest published criteria.6 Patients with VaD were diagnosed according to the criteria of the NINDS-AIREN (National Institute of Neurological Disorders and Stroke/Association Internationale pour la Recherche et l’Enseignement en Neurosciences).18 In this study, we reviewed the medical records of eligible subjects and collected data including age, sex, education level, Mini-Mental State Examination score, Clinical Dementia Rating scale score, molecular imaging report including the standardised uptake value ratio (SUVR) of 11C-PIB PET, and the pre- and post-imaging diagnoses. For patients who were diagnosed with MCI, their progression during subsequent follow-up visits was also reviewed.
     
    The need for 18F-FDG with or without 11C-PIB PET was determined by the geriatrician who performed the initial clinical assessment. The images were evaluated by a radiologist with more than 10 years of experience in reading PET scans. Dementias were classified using the generally accepted criteria. Patients were fasted for at least 4 hours before the PET. The serum glucose level was measured in all patients. For 18F-FDG PET, the patient was rested in a dimly lit room with eyes closed for 30 minutes prior to injection of 18F-FDG via a venous catheter. Another 30 minutes of rest was observed before starting the acquisition. The acquired data were semi-quantitatively compared with age-stratified normal controls using three-dimensional stereotactic surface projections. For PIB imaging, acquisition was performed at 5 minutes and 35 minutes after 11C-PIB injection via a venous catheter, and SUVR images of 11C-PIB between 5 and 35 minutes were generated. Cerebellar grey matter was chosen as reference tissue. In this study, 11C-PIB PET scans were rated as positive (PIB+; if binding occurred in more than one cortical brain region; ie frontal, parietal, temporal, or occipital) or negative (PIB–; if predominantly white matter binding).
     
    The pattern of 18F-FDG PET hypometabolism that is suggestive of each subtype of dementia is as follows6 12 19:
    (1) AD—uni- or bi-lateral parietotemporal hypometabolism with posterior cingulate gyrus involvement or bilateral parietal and precuneal hypometabolism.
    (2) DLB—same as AD with added hypometabolism in occipital lobes.
    (3) bvFTD—uni- or bi-lateral frontotemporal hypometabolism with or without less-severe parietal hypometabolism.
    (4) Semantic dementia—anterior temporal lobe hypometabolism.
    (5) Progressive non-fluent aphasia—left posterior frontoinsular hypometabolism.
    (6) VaD—well-defined focal defects not fitting the above described patterns.
     
    Statistical analyses
    Descriptive statistics were used for data analyses. Continuous variables were expressed as mean ± standard deviation or median (interquartile range) as appropriate. Categorical data were expressed as number and percentages. The agreement between pre- or post-imaging diagnoses of dementia subtype was analysed by the Cohen’s kappa (κ) statistic. The Cohen’s κ reflected the degree of agreement: <0 = no agreement, 0-0.20 = slight agreement, 0.21-0.40 = fair agreement, 0.41-0.60 = moderate agreement, 0.61-0.80 = substantial agreement, and 0.81-1.00 = almost perfect agreement. All analyses were performed with the Statistical Package for the Social Sciences (Windows version 18.0; SPSS Inc, Chicago [IL], US).
     
    Results
    A total of 109 patients (56.9% were female) were recruited of whom 102 had dementia and seven had MCI. Both 18F-FDG and 11C-PIB PET data were available for 45 (41.3%) patients, and 64 patients underwent 18F-FDG only. The final diagnosis of the 102 demented patients after neuroimaging is shown in Table 1.
     

    Table 1. Characteristics of demented patients by final diagnoses after brain 18F-FDG with or without 11C-PIB imaging (n=102)
     
    The accuracy of clinical diagnoses is summarised in Table 2. Overall, PET scans confirmed the clinical impression in 63.7% of patients, and corrected the diagnosis in 36.3%. Using the result of PET scan as the gold standard, the frequency of accurate initial clinical diagnosis was low for FTD, VaD, and mixed dementia (14.3%, 28.6%, and 0%, respectively). The accuracy of clinical diagnosis for AD and DLB was 81.5% and 44.4%, respectively. After excluding subjects with an initial MCI diagnosis, the agreement between the initial and final post-imaging dementia diagnosis was only fair, with a Cohen’s κ of 0.25 (95% confidence interval, 0.05-0.45).
     

    Table 2. Change in clinical diagnoses of dementia subtypes after 18F-FDG with or without 11C-PIB brain imaging
     
    Table 3 lists the diagnosis of subjects before and after the availability of 18F-FDG with or without 11C-PIB PET neuroimaging. For subjects with a final diagnosis of AD (n=65), 18.5% (n=12) were initially diagnosed with non-AD dementia (including 3 with DLB, 2 with FTD, 4 with VaD, and 3 with other dementia) and subsequently received symptomatic AD therapy (ie ChEIs and/or memantine). For the 21 subjects who underwent PIB PET imaging, 19% (n=4) of those with AD (PIB+) were initially diagnosed with non-AD dementia. For subjects with an initial diagnosis of AD (n=74), 28.4% (n=21) had a change in diagnosis (including 4 DLB, 6 FTD, 4 VaD, 3 mixed AD plus VaD, and 4 with other dementia). Excluding subjects with DLB and mixed AD plus VaD, 13.7% of all subjects (14 out of 102) had discontinued their previous symptomatic AD therapy. For subjects with a final diagnosis of FTD (n=7), 85.7% (n=6) were initially misdiagnosed as AD. For subjects with a final diagnosis of DLB (n=9), 44.4% (n=4) were misdiagnosed as AD.
     

    Table 3. Agreement between initial and final diagnoses
     
    Five patients were diagnosed with unclassifiable dementia following neuroimaging, which comprised four females and one male with a mean age of 78 ± 9.4 years. All presented with amnesia. In addition, one patient presented with apraxia and dysexecutive syndrome and another presented with hyperorality. All of them were PIB-. An AD pattern of hypometabolism was present in four patients (2 with hypometabolism in posterior cingulate gyrus and 2 with hypometabolism in temporoparietal lobes). Isolated hypometabolism in the temporal lobes was present in one patient.
     
    The clinical information of the seven amnesic MCI subjects are summarised in Table 4. None of the three subjects without imaging risk factors for AD deteriorated over a follow-up period of 1 to 5 years. Of the four amnesic MCI subjects with imaging risk factors, two deteriorated into AD over a follow-up period of 5 years.
     

    Table 4. Longitudinal outcome of the seven patients with amnesic mild cognitive impairment
     
    Discussion
    In this study, we showed that 18F-FDG with or without 11C-PIB PET clarified and improved the accuracy of dementia diagnosis in 36.3% of patients, and confirmed the initial diagnosis in 63.7%. Using the results of PET scan as the gold standard, the accuracy of clinical diagnosis was low for FTD, VaD, and mixed dementia collectively. On the one hand, 11.7% of patients (ie 12 out of 102) were started on symptomatic AD therapy after the 18F-FDG with or without 11C-PIB PET neuroimaging investigations. On the other hand, 13.7% of patients (ie 14 out of 102) discontinued symptomatic AD therapy after 18F-FDG with or without 11C-PIB PET because they did not have AD.
     
    We also showed that the accuracy of clinical diagnosis of DLB and FTD was low (44.4% and 14.3%, respectively). This finding was in agreement with a previous study.20 Both DLB and FTD are commonly misdiagnosed clinically as AD (50% for DLB and 85.7% for FTD).20 We have previously reported that 100% of our patients with biomarkers that confirmed DLB and FTD presented with memory impairment in our memory clinic.20 A previous study also reported that 26% of DLB patients were initially misdiagnosed with AD, and 57% of these DLB patients presented with memory impairment.21 We understand that an accurate diagnosis of DLB is very important for subsequent management. Patients with DLB are particularly sensitive to neuroleptics.21 Neuroleptic sensitivity can present as drowsiness, confusion, abrupt worsening of parkinsonism, postural hypotension, or neuroleptic malignant syndrome.21 Other clinical features of DLB that need to be observed and tackled include well-formed visual hallucinations, rapid eye movement sleep behavioural disorder, and autonomic symptoms (including postural hypotension, sialorrhoea, and urinary and bowel symptoms).21 By accurately establishing the diagnosis of DLB, careful observation of classic DLB symptoms may reduce unnecessary investigations. Regarding therapeutic implications, DLB is characterised by far greater cholinergic deficits than AD. Hence, most DLB patients will benefit from ChEIs, and the extent of symptomatic improvement should be monitored after such therapy.22
     
    Similarly, FTD may be misdiagnosed as AD. The former can also present initially with memory impairment, as illustrated by our FTD patients. There is increasing evidence that elderly patients with FTD often present with memory impairment.5 23 24 In one autopsy study, 64% (n=7) of 11 elderly patients with FTD had anterograde memory loss.23 Current treatment guidelines do not advise giving ChEIs or memantine treatments to FTD patients. Thus, such medications should be stopped to prevent unnecessary adverse effects.25
     
    In the past few years, disease-modifying treatments (eg bapineuzumab) have failed to demonstrate their efficacy in clinical trials with AD patients.26 Detailed post-hoc analyses with AD biomarkers have shown the problem of diagnosing AD in subjects recruited in these studies. Only approximately 80% of these subjects had AD amyloid pathology, according to the presence of amyloid PET scan.26 Thus, including 11C-PIB PET to confirm brain amyloid in study inclusion criteria can help ensure recruitment of genuine AD patients to future clinical trials of disease-modifying treatments for AD.27 Given the minimally invasive nature of 11C-PIB PET compared with CSF amyloid-beta (Aβ) 42 measurements,7 it is likely to be a more acceptable choice for patients in clinical trials. At present, there are ongoing clinical trials of AD treatments including secretase inhibitors, Aβ aggregation inhibitors, Aβ and tau immunotherapy.27 We believe that 11C-PIB PET will play an important role in these clinical trials.
     
    It is considered that 18F-FDG and 11C-PIB PET may detect underlying AD in patients with MCI.28 In the present study, 50% of MCI patients (ie 2 out of 4) with 18F-FDG and 11C-PIB PET imaging findings positive for AD showed deterioration over a follow-up period of 5 years. Although recommending PET brain imaging in MCI patients is still debatable, we believe that this investigation can help clinicians to better plan future and long-term treatments. In particular, disease-modifying drugs for AD or MCI due to AD may prove to be effective in the coming decade. Finally, in the present study, five patients were diagnosed with unclassifiable dementia. In the four patients with an AD pattern of hypometabolism, AD may still be present as they may have diffuse plaques or amorphous plaques that do not bind well to PIB. Alternatively they may have another type of dementia that requires pathological confirmation, eg argyrophilic grain disease or neurofibrillary tangle–only dementia.29 We will follow up the remaining patient with isolated hypometabolism in the temporal lobes to see whether additional FTD features develop.
     
    There were several limitations to the present study. This was a retrospective case series and as such we were unable to collect further information such as the pre-imaging or post-imaging confidence of diagnosis. The diagnosis of dementia relied on the clinical diagnostic criteria without pathological confirmation. Therefore, we were also unable to compare the relative accuracy of clinical diagnosis and PET diagnosis with pathological diagnosis. For patients with MCI, some were not followed up for sufficiently long to ascertain whether or not they had deteriorated and developed dementia. Structural imaging (including computed tomography or magnetic resonance imaging) of the brain was not analysed as a separate variable but integrated into the pre-functional imaging clinical diagnoses of dementia subtypes. Our case series is likely to have selection bias as PET imaging is mostly a self-paid service in Hong Kong. The exception is for patients who are retired civil servants or recipients of Comprehensive Social Security Assistance. Demented patients who could not afford PET may differ to the patients selected. Although the PET images were analysed and read by radiologists experienced in PET, the interpretations depended heavily on individual experience and training; also, radiologists were not blinded to clinical information written on the request form. Despite these limitations, our study should be more reflective of day-to-day practice in a memory clinic and how 18F-FDG with or without11C-PIB PET imaging may assist clinical diagnosis.
     
    Conclusions
    In this study, 18F-FDG with or without 11C-PIB brain imaging improved the accuracy of diagnosis of dementia subtype in 36% of patients with underlying AD, DLB, VaD, and FTD who presented to our memory clinic.
     
    Declaration
    All authors have disclosed no conflicts of interest.
     
    References
    1. Alzheimer’s Disease International World Alzheimer Report 2015: executive summary. Available from: http://www.alz.co.uk/research/WorldAlzheimerReport2015-sheet.pdf. Accessed Sep 2015.
    2. Lam LC, Tam CW, Lui VW, et al. Prevalence of very mild and mild dementia in community-dwelling older Chinese people in Hong Kong. Int Psychogeriatr 2008;20:135-48. Crossref
    3. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:263-9. Crossref
    4. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65:1863-72. Crossref
    5. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-77. Crossref
    6. Harris JM, Gall C, Thompson JC, et al. Classification and pathology of primary progressive aphasia. Neurology 2013;81:1832-9. Crossref
    7. Shea YF, Chu LW, Zhou L, et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease in Chinese patients: a pilot study. Am J Alzheimers Dis Other Demen 2013;28:769-75. Crossref
    8. Duits FH, Teunissen CE, Bouwman FH, et al. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement 2014;10:713-723.e2. Crossref
    9. Sinha N, Firbank M, O’Brien JT. Biomarkers in dementia with Lewy bodies: a review. Int J Geriatr Psychiatry 2012;27:443-53. Crossref
    10. Harris JM, Gall C, Thompson JC, et al. Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology 2013;80:1881-7. Crossref
    11. Davison CM, O’Brien JT. A comparison of FDG-PET and blood flow SPECT in the diagnosis of neurodegenerative dementias: a systematic review. Int J Geriatr Psychiatry 2014;29:551-61. Crossref
    12. Schöll M, Damián A, Engler H. Fluorodeoxyglucose PET in neurology and psychiatry. PET Clin 2014;9:371-90. Crossref
    13. Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chételat G. Amyloid PET in clinical practice: Its place in the multidimensional space of Alzheimer’s disease. Neuroimage Clin 2013;2:497-511. Crossref
    14. Cummings JL. Biomarkers in Alzheimer’s disease drug development. Alzheimers Dement 2011;7:e13-44. Crossref
    15. Ossenkoppele R, Prins ND, Pijnenburg YA, et al. Impact of molecular imaging on the diagnostic process in a memory clinic. Alzheimers Dement 2013;9:414-21. Crossref
    16. Laforce R Jr, Buteau JP, Paquet N, Verret L, Houde M, Bouchard RW. The value of PET in mild cognitive impairment, typical and atypical/unclear dementias: A retrospective memory clinic study. Am J Alzheimers Dis Other Demen 2010;25:324-32. Crossref
    17. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34:939-44. Crossref
    18. Román GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993;43:250-60. Crossref
    19. Waldö ML. The frontotemporal dementias. Psychiatr Clin North Am 2015;38:193-209. Crossref
    20. Shea YF, Ha J, Chu LW. Comparisons of clinical symptoms in biomarker-confirmed Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia patients in a local memory clinic. Psychogeriatrics 2014;15:235-41. Crossref
    21. Zweig YR, Galvin JE. Lewy body dementia: the impact on patients and caregivers. Alzheimers Res Ther 2014;6:21. Crossref
    22. Gauthier S. Pharmacotherapy of Parkinson disease dementia and Lewy body dementia. Front Neurol Neurosci 2009;24:135-9. Crossref
    23. Baborie A, Griffiths TD, Jaros E, et al. Frontotemporal dementia in elderly individuals. Arch Neurol 2012;69:1052-60. Crossref
    24. Hornberger M, Piguet O. Episodic memory in frontotemporal dementia: a critical review. Brain 2012;135:678-92. Crossref
    25. Portugal Mda G, Marinho V, Laks J. Pharmacological treatment of frontotemporal lobar degeneration: systematic review. Rev Bras Psiquiatr 2011;33:81-90. Crossref
    26. Blennow K, Mattsson N, Schöll M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci 2015;36:297-309. Crossref
    27. Wisniewski T, Goñi F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron 2015;85:1162-76. Crossref
    28. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551-61. Crossref
    29. Kovacs GG. Tauopathies. In: Kovacs GG, editor. Neuropathology of neurodegenerative diseases: a practical guide. Cambridge: Cambridge University Press; 2015: 125-8.

    Correlation of thermal deficit with clinical parameters and functional status in patients with unilateral lumbosacral radiculopathy

    Hong Kong Med J 2016 Aug;22(4):320–6 | Epub 3 Jun 2016
    DOI: 10.12809/hkmj154748
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Correlation of thermal deficit with clinical parameters and functional status in patients with unilateral lumbosacral radiculopathy
    Irena M Dimitrijevic, MSc, MD1; Mirjana N Kocic, MD, PhD2; Milica P Lazovic, MD, PhD3; Dragan D Mancic, PhD4; Olga K Marinkovic, MD2; Dragan S Zlatanovic, MSc, MD2
    1 Department of Rehabilitation of Neurology, Traumatic, Rheumatic Patients and After-surgery States, Institute for Treatment and Rehabilitation “Niška Banja”, Niš, Serbia
    2 Clinic for Physical Medicine and Rehabilitation, Clinical Center Niš, Niš, Serbia and Faculty of Medicine, University of Niš, Niš, Serbia
    3 Institute for Rehabilitation Belgrade, Belgrade, Serbia and Faculty of Medicine, University of Belgrade, Belgrade, Serbia
    4 Department of Electronics, Faculty of Electronic Engineering, University of Niš, Niš, Serbia
     
    Corresponding author: Dr Irena M Dimitrijevic (irenadimitrije@gmail.com)
     
     Full paper in PDF
    Abstract
    Introduction: Lumbosacral radiculopathy is a pathological process that refers to the dysfunction of one or more spinal nerve roots in the lumbosacral region of the spine. Some studies have shown that infrared thermography can estimate the severity of the clinical manifestation of unilateral lumbosacral radiculopathy. This study aimed to examine the correlation of the regional thermal deficit of the affected lower extremity with pain intensity, mobility of the lumbar spine, and functional status in patients with unilateral lumbosacral radiculopathy.
     
    Methods: This cross-sectional study was conducted at the Clinic for Physical Medicine and Rehabilitation of the Clinical Center Niš, Serbia. A total of 69 patients with unilateral lumbosacral radiculopathy of discogenic origin were recruited, with the following clinical parameters evaluated: (1) pain intensity by using a visual analogue scale, separately at rest and during active movement; (2) mobility of the lumbar spine by Schober test and the fingertip-to-floor test; and (3) functional status by the Oswestry Disability Index. Temperature differences between the symmetrical regions of the lower extremities were detected by infrared thermography. A quantitative analysis of thermograms determined the regions of interest with maximum thermal deficit. Correlation of maximum thermal deficit with each tested parameter was then determined.
     
    Results: A significant and strong positive correlation was found between the regional thermal deficit and pain intensity at rest, as well as pain during active movements (rVAS – rest=0.887, rVAS – activity=0.890; P<0.001). The regional thermal deficit significantly and strongly correlated with the Oswestry Disability Index score and limited mobility of the lumbar spine (P<0.001).
     
    Conclusions: In patients with unilateral lumbosacral radiculopathy, the values of regional thermal deficit of the affected lower extremity are correlated with pain intensity, mobility of the lumbar spine, and functional status of the patient.
     
    New knowledge added by this study
    • The values of the regional thermal deficit, especially at the heel and plantar region of the affected foot, significantly and strongly correlated with radicular pain intensity.
    • The values of the regional thermal deficit of the affected lower extremity also correlated with limited mobility of the lumbar spine and functional status of patients with unilateral lumbosacral radiculopathy.
    Implications for clinical practice or policy
    • Infrared thermography may be applied for an objective assessment of radicular pain intensity.
     
     
    Introduction
    Lumbosacral radiculopathy is a pathological process that refers to the dysfunction of one or more spinal nerve roots in the lumbosacral region of the spine. It is a frequent consequence of degenerative changes in the intervertebral discs that cause compression of the spinal nerve root in the intervertebral foramen.1 The main clinical characteristic of this disease is pain that spreads from the lumbar spine to one of the lower extremities.1 In addition, a typical clinical presentation is characterised by sensory deficits, muscle weakness, and impaired deep tendon reflexes.1 2
     
    The initial diagnosis of radiculopathy is based on a detailed patient history and physical examination.3 A precise diagnosis requires information about the function of the spinal nerve root, as well as structural changes in the spine so additional diagnostic procedures are used: electrodiagnostic testing and magnetic resonance imaging (MRI) or computed tomography.2 3
     
    There is a possibility of using infrared thermography (IRT) since vasomotor dysfunction caused by irritation or damage of the spinal nerve root leads to abnormal changes in skin temperature of the affected lower extremity.2 4 5 6 7 8 Temperature differences between the symmetrical parts of the lower extremities can be detected by IRT. A quantitative analysis of the recorded temperature differences provides information that may indicate unilateral radiculopathy.4 5 7 Considering the ability of IRT to estimate vasomotor instability, it can be used to detect unilateral radiculopathy and thus supplement the findings of clinical, morphological, and functional examination.7 Some studies have shown that IRT can estimate the severity of the clinical manifestation of unilateral lumbosacral radiculopathy.5 9 10 11
     
    The aim of this study was to examine the correlation of regional thermal deficit of the affected lower extremity with pain intensity, mobility of the lumbar spine, and functional status in patients with unilateral lumbosacral radiculopathy.
     
    Methods
    Patients
    This cross-sectional study included out-patients with lumbosacral radiculopathy who were treated at the Clinic for Physical Medicine and Rehabilitation of the Clinical Center Niš, Serbia, between February 2012 and January 2013. Clinical Center Niš is a tertiary institution that provides health services for the whole southeast and south Serbia, with a population of around 3 million. Clinical Center Niš is also the educational and scientific research base of the Faculty of Medicine, University of Niš. During the study period, 97 of 213 patients with lumbosacral radiculopathy were recruited. All were aged over 18 years, had symptoms present for more than 6 weeks, and had unilateral clinical manifestations. The diagnosis was made by clinical examination and confirmed by additional investigations such as needle electromyography or MRI. Patients were excluded if they had any of the following: pregnancy, skin changes (lacerations, inflammation, haemangioma), inflammatory joint disease, malignant disease, infectious disease, disorders of peripheral circulation (varicosities, thrombophlebitis), neurological disorder (various neuropathies), spinal stenosis, cauda equina syndrome, bilateral lumbosacral radiculopathy, or previous injury of the lumbosacral region of the spine as well as previous surgical interventions in the same region. Of 97 recruited patients, five refused to participate and 23 patients were excluded due to anamnestic or clinical indicators of the diseases listed in the exclusion criteria. A total of 69 patients with unilateral lumbosacral radiculopathy of discogenic origin were eligible for the study.
     
    The study was approved by the Ethics Committee of the Faculty of Medicine, University of Niš (no. 01-6481-2). All patients gave written consent to participate in the study.
     
    Clinical and functional evaluation
    We measured the following parameters by clinical examination:
    (1) Pain intensity was measured on a visual analogue scale (VAS). This scale represents a 10-cm horizontal scale, graded 0 to 10, where 0 is a condition without pain and 10 is the worst possible pain.12 Pain intensity was measured separately at rest and during active movement of the lumbar spine. The patients marked their pain intensity on VAS as an average value of the pain they had experienced for 7 days before the test.
    (2) The mobility of the lumbar spine was tested by (a) fingertip-to-floor distance (FFD) that refers to measuring the flexion of the lumbar spine as a distance from the tip of the middle finger to the floor, expressed in centimetres,13 and (b) the Schober test that assesses the mobility by measuring changes in the distance between the two spinal marks. Spinal marks were made on the skin at the spinous process of L5 and 10 cm above when a patient stood in a neutral position. The patient then bent forward with straight knees and the change in distance between these marks is measured in centimetres.14 The investigator, who was blinded to the results of other assessments, tested the mobility of the lumbar spine.
    (3) The functional ability of patients was estimated by the Oswestry Disability Index (ODI) that comprises 10 questions. Each question has six given answers that are graded 0 to 5 points. After completing the questionnaire, the points were added and expressed in percentages with respect to the maximum number of points (50), where a higher value corresponds to more severe functional disability.15
     
    The participants filled in the questionnaire in their native language, without any assistance from the investigators.
     
    Infrared thermographic imaging
    The examined patients were recorded by infrared (IR) imaging camera and the thermograms were quantitatively analysed. The operator, who recorded and analysed the thermograms, did not know the nature of the patient’s disease. In this study, only one set of recordings was used, according to the recommendation of the guidelines for neuromusculoskeletal thermography that a single set of thermograms can be adequate in cases where obvious temperature asymmetry exists.16
     
    The conditions of thermographic recording were the same for all patients, according to the guidelines for neuromusculoskeletal thermography of the American Academy of Thermology.16 Room temperature, where the recordings were conducted, was always within the range of 20°C to 25°C. The room was protected from direct ultraviolet exposure and air conditioning was turned off. Local application of analgesics and cosmetic preparations were avoided before the recording. Corticosteroids, sympathetic blockers, vasoactive medications, and transdermal patches were not used for at least 24 hours before the recording. Physical procedures were not conducted at least 12 hours before and electrodiagnostic testing 24 hours before the recording.16
     
    The body part marked as the region of interest (ROI) was without clothes for at least 15 minutes prior to recording. The ROIs were the front and back part of the lower extremity, and plantar area of the foot and the heel. During the recording of the plantar surface of the foot, patients were seated with legs in the horizontal plane and feet in a vertical plane without touching each other. The recording of the lower extremity was done with patients in a standing position with lower extremities in slight abduction. A varioSCAN high-resolution 3021 imaging camera (Jenoptik, Dresden, Germany) recorded bilateral ROIs. The analysis of the thermograms was done by IRBIS Professional 2.2. graphic-oriented software package (InfraTec GmbH, Dresden, Germany).
     
    Quantitative analysis of the thermograms determined the average temperature value of ROIs, expressed in degrees Celsius. For each patient and for each separate ROI, a difference in average temperature value was calculated, between ROI of unaffected and affected lower extremity, according to the formula:
    ΔT = mean value temperature ROI of unaffected lower extremity – mean value temperature ROI of the affected extremity
     
    In order to correlate regional thermal deficit (ΔT) with other examined parameters, ROI with maximum ΔT (max ΔT) value was considered.
     
    In the final stage of the research, a correlation analysis of max ΔT and each separate tested parameter was performed.
     
    Statistical analysis
    Data were analysed using the Statistical Package for the Social Sciences (Windows version 10.0; SPSS Inc, Chicago [IL], US). Normal distribution was tested by Kolmogorov-Smirnov test. The results of the statistical analysis were represented as mean ± standard deviation for data with normal distribution, or as median for data without normal distribution. In order to test the correlation between max ΔT and other tested parameters, Pearson correlation coefficient (r) was used for normal distribution or Spearman correlation coefficient (ρ) for data without normal distribution. A P value of <0.05 was considered statistically significant.
     
    Results
    Baseline characteristics of patients are shown in Table 1. Thermogram of the lower extremities showed a significant thermal deficit (ΔT >1°C) in the affected lower extremity in at least one out of four recorded ROIs. In the majority of patients (n=43; 62.3%), maximum ΔT value was obtained at the heel or plantar region of the foot. Outcome measures are shown in Table 2 as mean value for parameters with normal distribution and median value with interquartile range for parameters without normal distribution.
     

    Table 1. Baseline characteristics of patients
     

    Table 2. Assessment of pain, regional temperature difference, mobility of the lumbar spine, and functional status
     
    A statistically significant and strong positive correlation was found between max ΔT and pain intensity at rest (VAS – rest), as well as pain during active movement (VAS – activity), and showed that pain intensity (VAS – rest and VAS – activity) increased along with increased value of max ΔT (rVAS – rest=0.887, rVAS – activity=0.890; P<0.001).
     
    It has also been determined that there was a significant and strong positive correlation between max ΔT and ODI score that indicates a relationship between these two parameters in that the functional condition of the patient worsened with increased max ΔT (r=0.744; P<0.001).
     
    Furthermore, a statistically significant and strong correlation was evident between max ΔT and limited mobility of the lumbar spine. Nonetheless, it should be emphasised that the correlation between max ΔT and FFD was positive (ρ=0.776; P<0.001) whereas the correlation between max ΔT and Schober test was negative (ρ= –0.795; P<0.001). The relationship between these parameters showed that the mobility of the lumbar spine was reduced with increased value of max ΔT. Scatter plots show the results of correlation analyses (Figs 1, 2, 3). Thermograms of two patients with different values of thermal deficit are shown in Figure 4.
     

    Figure 1. The relationship between side-to-side temperature difference and pain intensity (a) at rest and (b) during active movement of the lumbar spine
     

    Figure 2. The relationship between side-to-side temperature difference and Oswestry Disability Index (ODI)
     

    Figure 3. The relationship between side-to-side temperature difference and mobility of the lumbar spine: (a) fingertip-to-floor distance (FFD) and (b) Schober test
     

    Figure 4. Thermograms of the lower extremities of patients
    (a) A patient with ΔT – heel area = 2.08°C, VAS – rest = 8, and VAS – activity = 9. (b) A patient with ΔT – heel area = 1.02°C, VAS – rest = 4, and VAS – activity = 5
     
    Discussion
    The results of this study show that regional thermal deficit, determined by thermography, is correlated with pain intensity, lumbar spine mobility, and functional status in patients with unilateral lumbosacral radiculopathy.
     
    Since the greatest amount of heat from the skin surface is lost through emission of IR rays, IRT is the method of choice that enables precise detection and visualisation of changes in skin temperature.17 By detecting changes in skin temperature, IRT can contribute to objective assessment of disease that directly or indirectly affects the vascular microcirculation tonus that is regulated by the autonomous nervous system.4 18 Some studies have shown the significance of thermography in the estimation of some painful conditions, including radiculopathy.4 8 10 18 19 20
     
    Contrary to the methods that estimate radiculopathy on the basis of structural changes in the spine or changes in spinal nerve root function, IRT assesses radiculopathy based on a vasomotor dysfunction. Its advantage in comparison with other methods is its non-invasive, painless nature that does not expose the patient to ionising radiation and is also easy to use.4 18 21 In cases of bilateral radiculopathy, false-negative results can be obtained because of false temperature symmetry.7 22
     
    Our research focused on the lower extremities, similar to the majority of research on lumbosacral radiculopathy within the field of thermography.6 7 10 11 Detection and visualisation of skin temperature changes in the affected lower extremity was by IRT. This detects IR rays emitted from the surface of the body and then focuses and directs them by special lenses towards a photosensor that transforms the energy of the detected IR rays into electric impulses and then into a visible recording—a thermogram. The temperature emitted from the skin is thus visualised on the screen in the form of colour spectrum.23 Development of information technology has reduced the disadvantages of subjective estimation of the intensity of colouration on the thermogram. New-generation IR cameras show the temperature asymmetry as high-quality thermograms and enable a quantitative analysis.17 24
     
    Qualitative analysis of the thermograms of patients showed regional hypothermia of the affected lower extremity, and has also been observed in other studies.7 10 11 Regional hypothermia is considered a consequence of the sympathetic vasoconstrictor reflex that develops due to irritation of the dorsal root of the spinal nerve.7 22 Some authors describe hypothermia as muscle atrophy caused by denervation or inactivity.2 25
     
    In our study, the regional thermal deficit of the affected lower extremity did not follow the distribution of a dermatome. A possible explanation for this is that blood supply to the skin of the lower extremities is quite different to the distribution of sensory nerves in the same region.2 Therefore, without additional information, it is not possible to use IRT to determine the level of disc herniation.
     
    Maximum values of ΔT have mostly been recorded at the heel or plantar region of the foot. This shows that vascular changes are more prominent in the distal regions of the affected extremity. Our results are similar to those obtained by Zaproudina et al,22 who found a more significant correlation between pain intensity and temperature asymmetry in the plantar area of the foot in patients with low back pain (LBP).
     
    The present study showed a statistically significant correlation between regional thermal deficit values of the affected lower extremity and radicular pain intensity. Our results are in accordance with the results obtained by other authors, who have observed a correlation between temperature asymmetry and radicular pain, and show that IRT can be effective in the objective differentiation of the presence or absence of pain.5 7 9 10 In the present study, analysis of the correlation between the stated parameters demonstrated that the values of thermal deficit increase along with increased pain intensity (Fig 1). On the basis of this finding, it can be concluded that thermograms provide not only information about the existence of pain but also about pain intensity. This correlation has been explained as nociceptor excitation, the secondary consequence of which is vasoconstriction.26 A positive correlation between pain intensity and temperature asymmetry of the affected lower extremity was also found in research on patients with LBP,22 although other researchers have found no clear correlation between temperature asymmetry and radicular pain intensity.2 These different results can be partially explained by the fact that the mentioned study established the diagnosis of unilateral radiculopathy only on the basis of clinical findings, while pathological findings of electrophysiological examination were present in only 43% of patients. In this study, MRI findings showed disc herniation in 86% of patients, but in 30% the herniation was central, and was not characterised by nerve compression and concomitant muscle denervation.2
     
    It was also observed that higher values of thermal deficit are correlated with worse functional status of patients. The results of the ODI questionnaire showed that the examined patients had limited activities of daily living that was thought to be a result of conditioning by the presence of pain. The relationship of these parameters was also observed in the study by Zaproudina et al22 on patients with LBP.
     
    The relationship between regional thermal deficit and spine mobility shows that spine mobility is reduced with increased values of thermal deficit. The correlation between abnormal changes in skin surface temperature and limited mobility has been previously observed in a study that included patients with pain syndrome in the pelvic-femoral region.27
     
    Considering that the presence of pain can account for limited mobility of the lumbar region of the spine, as well as limited activities of daily living, the most significant of all correlations is the one between the regional thermal deficit of the affected lower extremity and radicular pain intensity.
     
    The results of our study should be considered in light of the following limitations. The main limitation is the absence of a control group. Future research should address this. Another limitation is that circadian rhythm and psychological factors were not controlled. We believe that it has not significantly affected our results, because we did not analyse the absolute value of the temperature, but only the temperature difference between the two sides of the lower extremities.
     
    Conclusions
    Infrared thermography is a simple, non-invasive, and painless method that can be used to estimate neurovascular dysfunction in patients with unilateral lumbosacral radiculopathy. The correlation between thermal deficit and pain intensity is highly significant. Estimation of pain intensity by VAS is a subjective method, whereas determining the thermal deficit is objective. The information obtained on the basis of thermal deficit is significant as it provides an objective assessment of radicular pain intensity.
     
    Declaration
    All authors have disclosed no conflicts of interest.
     
    References
    1. Hsu PS, Armon C, Levin K. Lumbosacral radiculopathy: pathophysiology, clinical features, and diagnosis. Available from: http://cursoenarm.net/UPTODATE/contents/mobipreview.htm?25/35/26161?source=HISTORY. Accessed 15 May 2015.
    2. Ra JY, An S, Lee GH, Kim TU, Lee SJ, Hyun JK. Skin temperature changes in patients with unilateral lumbosacral radiculopathy. Ann Rehabil Med 2013;37:355-63. Crossref
    3. Lee JH, Lee SH. Physical examination, magnetic resonance image, and electrodiagnostic study in patients with lumbosacral disc herniation or spinal stenosis. J Rehabil Med 2012;44:845-50. Crossref
    4. American Medical Association Council. Thermography in neurological and musculoskeletal conditions. Thermol 1987;2:600-7.
    5. Feng T, Zhao P, Liang G. Diagnostic significance of topical image of infrared thermograph on the patient with lumbar intervertebral disc herniation—a comparative study on 45 patients and 65 normal control [in Chinese]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1998;18:527-30.
    6. Thomas D, Cullum D, Siahamis G, Langlois S. Infrared thermographic imaging, magnetic resonance imaging, CT scan and myelography in low back pain. Br J Rheumatol 1990;29:268-73. Crossref
    7. Uematsu S, Jankel WR, Edwin DH, et al. Quantification of thermal asymmetry. Part 2: Application in low-back pain and sciatica. J Neurosurg 1988;69:556-61. Crossref
    8. LaBorde TC. Thermography in diagnosis of radiculopathies. Clin J Pain 1989;5:249-53. Crossref
    9. Ping Z, You FT. Correlation study on infrared thermography and nerve root signs in lumbar intervertebral disk herniation patient: a short report. J Manipulative Physiol Ther 1993;16:150-4. Erratum in: J Manipulative Physiol Ther 1993;16:560.
    10. Takahashi Y, Takahashi K, Moriya H. Thermal deficit in lumbar radiculopathy. Correlations with pain and neurologic signs and its value for assessing symptomatic severity. Spine (Phila Pa 1976) 1994;19:2443-9. Crossref
    11. Gillström P. Thermography in low back pain and sciatica. Arch Orthop Trauma Surg 1985;104:31-6. Crossref
    12. Scott J, Huskisson EC. Graphic representation of pain. Pain 1976;2:175-84. Crossref
    13. Perret C, Poiraudeau S, Fermanian J, Colau MM, Benhamou MA, Revel M. Validity, reliability, and responsiveness of the fingertip-to-floor test. Arch Phys Med Rehabil 2001;82:1566-70. Crossref
    14. Rezvani A, Ergin O, Karacan I, Oncu M. Validity and reliability of the metric measurements in the assessment of lumbar spine motion in patients with ankylosing spondylitis. Spine (Phila Pa 1976) 2012;37:E1189-96. Crossref
    15. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine (Phila Pa 1976) 2000;25:2940-52. Crossref
    16. Schwartz RG. Guidelines for neuromusculoskeletal thermography. Thermol Int 2006;16:5-9.
    17. Herry CL, Frize M. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging. BioMedical Engineering OnLine 2004. Available from: http://www.biomedical-engineering-online.com/content/3/1/19. Accessed 15 May 2015.
    18. Hooshmand H, Hashmi M, Phillips EM. Infrared thermal imaging as a tool in pain management—an 11 year study. Part I of II. Thermol Inter 2001;11:53-65.
    19. Cojocaru MC, Cojocaru IM, Cojan Carlea NA, Cinteza D, Berteanu M. Infrared thermography—a tool for computer assisted research in rehabilitation medicine. Appl Mech Mater 2015;772:603-7. Crossref
    20. Lahiri BB, Subramainam B, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol 2012;55:221-35. Crossref
    21. Nahm FS. Infrared thermography in pain medicine. Korean J Pain 2013;26:219-22. Crossref
    22. Zaproudina N, Ming Z, Hänninen OO. Plantar infrared thermography measurements and low back pain intensity. J Manipulative Physiol Ther 2006;29:219-23. Crossref
    23. Tkachenko YA, Golovanova M, Ovechkin AM. Clinical thermography [in Russian]. Nizhny Novgorod: Union of Western and Oriental Medicine; 1998.
    24. Uematsu S, Edwin DH, Jankel WR, Kozikowski J, Trattner M. Quantification of thermal asymmetry. Part 1: Normal values and reproducibility. J Neurosurg 1988;69:552-5. Crossref
    25. Hyun JK, Lee JY, Lee SJ, Jeon JY. Asymmetric atrophy of multifidus muscle in patients with unilateral lumbosacral radiculopathy. Spine (Phila Pa 1976) 2007;32:E598-602. Crossref
    26. Conwell T. Distinct IR signatures result from neuropathic abnormalities of the limbs. Thermol Int 2013;23:34-5.
    27. Gabrhel J, Popracová Z, Tauchmannová H, Chvojka Z. Thermal findings in pain syndromes of the pelvic-femoral region. Thermol Int 2013;23:157-63.

    Clinical and genetic profile of catecholaminergic polymorphic ventricular tachycardia in Hong Kong Chinese children

    Hong Kong Med J 2016 Aug;22(4):314–9 | Epub 3 Jun 2016
    DOI: 10.12809/hkmj154653
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Clinical and genetic profile of catecholaminergic polymorphic ventricular tachycardia in Hong Kong Chinese children
    TC Yu, MB, ChB, FHKAM (Paediatrics)1; Anthony PY Liu, MB, BS, MRCPCH2; KS Lun, MB, ChB, FHKAM (Paediatrics)3; Brian HY Chung, MB, ChB, FHKAM (Paediatrics)2; TC Yung, MB, BS, FHKAM (Paediatrics)3
    1 Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
    2 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
    3 Department of Paediatric Cardiology, Queen Mary Hospital, Pokfulam, Hong Kong
     
    Corresponding author: Dr TC Yu (ytc604@ha.org.hk)
     
     Full paper in PDF
    Abstract
    Objective: To report our experience in the management of catecholaminergic polymorphic ventricular tachycardia in Hong Kong Chinese children.
     
    Methods: This case series study was conducted in a tertiary paediatric cardiology centre in Hong Kong. All paediatric patients diagnosed at our centre with catecholaminergic polymorphic ventricular tachycardia from January 2008 to October 2014 were included.
     
    Results: Ten patients (five females and five males) were identified. The mean age at presentation and at diagnosis were 11.0 (standard deviation, 2.9) years and 12.5 (2.8) years, respectively. The mean delay time from first presentation to diagnosis was 1.5 (standard deviation, 1.3) years. They presented with recurrent syncope and six patients had a history of aborted cardiac arrest. Four patients were initially misdiagnosed to have epilepsy. Catecholaminergic polymorphic ventricular tachycardia was diagnosed by electrocardiogram at cardiac arrest (n=2), or provocation test, either by catecholamine infusion test (n=6) or exercise test (n=2). Mutations of the RyR2 gene were confirmed in six patients. Nine patients were commenced on beta-blockers after diagnosis. Despite medications, three patients developed aborted or resuscitated cardiac arrest (n=2) and syncope (n=1). Left cardiac sympathetic denervation was performed in five patients and an implantable cardioverter defibrillator was implanted in another. There was no mortality during follow-up.
     
    Conclusions: Catecholaminergic polymorphic ventricular tachycardia should be considered in children who present with recurrent syncope during exercise or emotional stress. Despite beta-blocker treatment, recurrent ventricular arrhythmias occur and may result in cardiac arrest.
     
    New knowledge added by this study
    • This is the first study of catecholaminergic polymorphic ventricular tachycardia (CPVT) in Hong Kong describing local experience in the management of this rare arrhythmic syndrome.
    • The genetic background (RyR2 mutation) of our Chinese children is similar to those in overseas studies.
    Implications for clinical practice or policy
    • CPVT should be considered in young patients who present with exercise-related syncope.
    • Maintaining a high index of suspicion and correct diagnosis of CPVT may be life-saving.
     
     
    Introduction
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome. Mutation of the ryanodine receptor 2 (RyR2) gene and infrequently the calsequestrin (CASQ2) gene is identified in approximately 60% to 70% of patients.1 2 Patients with CPVT usually present with syncope and sudden cardiac death. The symptoms are due to bidirectional polymorphic ventricular tachycardia (VT) induced by adrenergic stress.1 Onset of arrhythmia syndrome is usually in childhood. Many affected children are considered to have vasovagal syncope or epilepsy before a correct diagnosis is made.1 2 3 4 If left untreated, the mortality of CPVT is up to 31% by the age of 30 years.1 3 5
     
    In this study, we reviewed the clinical characteristics, genetic profile, and outcome of CPVT in Hong Kong Chinese children.
     
    Methods
    Our study included children diagnosed with CPVT from January 2008 to October 2014 at Queen Mary Hospital, a university-affiliated teaching hospital in Hong Kong. The hospital records were retrospectively reviewed. Demographic data, clinical presentation, diagnostic methods, and genetic tests were reviewed. In all patients, the heart rate–corrected QT interval of the resting electrocardiogram was normal and the presence of structural heart disease was excluded by echocardiography (n=10) and/or magnetic resonance imaging (n=5). We also summarised the treatment modalities, response to treatment, and clinical outcome up to October 2014.
     
    Genetic analysis
    Blood samples of seven patients were sent to the Molecular Genetics Laboratory of Victorian Clinical Genetic Services, Australia where testing for mutations of the RyR2 gene was performed. The assay involved sequencing of 17 hotspot exons (exons 1, 8, 14, 15, 44, 46, 47, 49, 88, 93, 95, 97, 101, 102, 103, 104, 105), their splice junctions and 20 bps into the introns. Since 2014, the Laboratory has made use of a cardiac next-generation sequencing panel to analyse the 28 arrhythmia genes: AKAP9, ANK2, CACNA1C, CACNA2D1, CACNB2, CASQ2, CAV3, GJA5, GPD1L, HCN4, KCNA5, KCND3, KCNE1, KCNE1L, KCNE2, KCNE3, KCNH2, KCNJ2, KCNJ5, KCNJ8, KCNQ1, NPPA, RYR2, SCN1B, SCN3B, SCN4B, SCN5A, and SNTA1. In two patients, the samples were tested by the local Laboratory Genetic Service (Department of Pathology, Princess Margaret Hospital, Hong Kong), where direct sequencing of selected hotspot exons and the flanking introns (10 bps) was performed. Cascade testing was offered for first-degree relatives of genotype-positive subjects.
     
    Results
    Characteristics of the study subjects
    During the study period, 10 patients were diagnosed to have CPVT. Their demographic data and clinical features are summarised in Table 1. The group comprised five female and five male patients; two of whom were brothers. The mean (± standard deviation) age at first presentation was 11.0 ± 2.9 (range, 6.2-14.2) years. The mean age at diagnosis was 12.5 ± 2.8 (range, 6.9-15.1) years. The mean delay time from first presentation to diagnosis was 1.5 ± 1.3 years.
     

    Table 1. Demographic data, clinical presentation, diagnostic method, and the threshold heart rate of polymorphic ventricular ectopic and ventricular tachycardia of the 10 patients
     
    Six patients presented initially with syncope while the other four presented with aborted cardiac arrest. At the end of the study, a total of six patients had aborted cardiac arrest. The triggering event for syncope or cardiac arrest was either exercise or emotion. Nonetheless, no such event was evident in three patients.
     
    Four patients were initially misdiagnosed with epilepsy, one of whom was treated with an anticonvulsant prior to the diagnosis of CPVT.
     
    Of the four patients who presented with aborted cardiac arrest, three required repeated cardioversion because of recurrent VT immediately following successful termination of ventricular arrhythmias. The case of patient 4 has been reported previously.6
     
    Diagnosis of catecholaminergic polymorphic ventricular tachycardia and genetic analysis
    Diagnosis of CPVT in two patients was based on the presence of bidirectional polymorphic VT in the cardiac arrest electrocardiogram. In the remaining patients, diagnosis was made when polymorphic or bidirectional VT was induced during provocation tests by exercise (n=2) or catecholamine infusion (n=6). Heart rate at the induction of ventricular premature beats ranged from 90 to 150 beats/min. Polymorphic VTs were induced when heart rate was increased to 126 to 170 beats/min (Fig).
     

    Figure. Patient 1: (a) polymorphic ventricular ectopics, with bidirectional QRS complexes induced by exercise test; and (b) polymorphic ventricular tachycardia, with bidirectional QRS complexes recorded by Holter monitoring
     
    Of the nine patients with genetic study, six were confirmed to have mutations of the RyR2 gene as shown in Table 2. One patient (patient 9) did not undergo genetic study because his brother (patient 5) was confirmed to have no mutation of RyR2. Only two (brothers of the same family) of 10 patients had a family history of cardiac arrhythmic events. There was no RyR2 mutation identified in the first-degree relatives of any patient with a RyR2 mutation.
     

    Table 2. RyR2 mutations identified in our cohort
     
    Treatment and response
    Medical treatment
    The treatment modalities and response are summarised in Table 3. All patients were started on a beta-blocker as first-line medication. One patient initially refused medical treatment. She then had recurrent syncope and subsequently agreed to treatment with nadolol.
     

    Table 3. The medical and surgical treatment, most-severe arrhythmic events during follow-up, and the latest Holter or Treadmill results with current treatment of the 10 patients
     
    Metoprolol was prescribed to three patients as initial medical treatment, although all switched to nadolol with or without flecainide due to unsatisfactory control (aborted cardiac arrest in one and exercise-induced polymorphic VT in another) or intolerable side-effects (tiredness and significant bradycardia at 38 beats/min).
     
    Of the six patients prescribed nadolol as the first medication, five had no more syncope and no VT on treadmill exercise testing. Nadolol was changed to flecainide in one patient (patient 7) due to significant resting bradycardia of 35 beats/min. Nadolol was later resumed at a lower dose.
     
    Atenolol was started in one girl as initial medical treatment but failed to prevent recurrent syncope. After changing to nadolol, she remained symptomatic and subsequently underwent left cardiac sympathetic denervation (LCSD).
     
    Additional treatments
    Left cardiac sympathetic denervation was performed via a video-assisted thoracoscopic approach in five patients. The lower half of the stellate ganglion and the sympathetic trunk of T2 to T4 were resected. After LCSD, one patient (patient 1) still had recurrent syncope. The other four patients had no more syncope. Dual-chamber implantable cardioverter defibrillator (ICD) implantation was performed in one patient (patient 7) who experienced an aborted cardiac arrest despite flecainide. She had no complications related to the ICD implantation. After implantation, she had one episode of syncope while she was swimming slowly in the pool with her mother. She was taken out of the water and was able to stand unaided soon after. The ICD interrogation noted an episode of VT/ventricular fibrillation that was successfully aborted by electric shocks from the ICD. She had no inappropriate shocks from the ICD during the follow-up period of 30 months.
     
    Outcomes
    The median duration of follow-up was 3.7 ± 2.0 (range, 0.7-6.7) years. Six (60%) patients became asymptomatic after drug treatment. Two patients had recurrent syncope; one of whom was without drug treatment. Two patients experienced aborted cardiac arrest, one received ICD implantation and another one refused. There was no mortality during the study period.
     
    Discussion
    Catecholaminergic polymorphic ventricular tachycardia is uncommon in Hong Kong Chinese children. Our centre treated most of the serious local paediatric cardiac arrhythmia cases. Over a period of 7 years we identified only 10 patients. Our case series is, to date, the largest in Chinese children.
     
    Many of our patients (6 out of 10) had experienced aborted cardiac arrest as the near-fatal arrhythmic event during the study. The diagnosis of CPVT can be challenging and requires documentation of typical bidirectional polymorphic VT at presentation, or induction of polymorphic VT by exercise test or catecholamine infusion test.1 2 3 7 8 Studies show that diagnosis of CPVT can be made in 69% and 75% of patients by exercise test and catecholamine infusion test, respectively.9 10
     
    Misdiagnosis and delay in diagnosis of CPVT is common. Our patients had a mean delay of 1.5 years from first presentation to diagnosis. Four of our patients were initially misdiagnosed with epilepsy, one of whom was prescribed anticonvulsant therapy. Of the 10 patients, four were not diagnosed until they presented with aborted cardiac arrest.
     
    Genetic mutations are identified in 60% to 70% of patients with CPVT, and more than 90% of the mutations affect the RyR2 gene.1 3 Mutation of the CASQ2 gene is rare (<2%). Very recently, mutation of triadin, a transmembrane sarcoplasmic reticulum protein, was found to be the cause of CPVT in two families.11 In these mutations, the defective proteins cause excessive calcium release from the sarcoplasmic reticulum to the cytoplasm leading to polymorphic VT.1 5 Similar to overseas studies, mutation of the RyR2 gene was evident in the majority (60%) of our patients.
     
    Patients with CPVT must be restricted from exercise to avoid the adrenergic trigger. A beta-blocker serves as first-line medical therapy.1 2 4 10 Nonetheless, CPVT is a very malignant arrhythmic disease and many patients remain symptomatic despite such therapy.1 3 4 10 In a systematic analysis of 354 CPVT patients treated with beta-blockers, the estimated 8-year arrhythmic event rate was 37.2%.12 Our study also showed that a high proportion of patients still developed arrhythmic events despite beta-blocker treatment (syncope in one and aborted cardiac arrest in two out of 10 patients).
     
    In the early period of study, we prescribed metoprolol in three patients, although all experienced treatment failure due to recurrent symptoms or intolerance. In the later period, nadolol was the initial medication and five out of six patients became asymptomatic.
     
    Flecainide, a class 1c anti-arrhythmic drug with dual action of direct ryanodine receptor blockage and blockage of sodium channels,1 12 may be effective in CPVT patients. Flecainide has been evaluated in a multicentre study of 33 CPVT patients. In 22 (76%) out of 29 patients, flecainide suppressed exercise-induced ventricular arrhythmia either partially (n=8) or completely (n=14).1 12 13 In our study, flecainide was used in four patients who had failed treatment with a beta-blocker. Three patients still had arrhythmic events, however.
     
    Studies showed that LCSD, which prevents noradrenaline release in the heart, is highly effective in severely affected CPVT patients.14 15 It can be performed with a minimally invasive approach by video-assisted thoracic surgery. In our study, five patients underwent LCSD. All recovered well and no complications were noted at follow-up. Four had no more syncope. Large studies are needed to further evaluate its efficacy in CPVT patients.
     
    An ICD has been recommended in patients who fail optimised medical therapy.1 12 14 16 Some recent studies have suggested that ICD may be harmful to CPVT patients, however, because both appropriate and inappropriate ICD shocks can potentially induce VT storms and cardiac arrest.16 17 Therefore, ICD implantation should be restricted to patients with symptoms refractory to optimised medical treatment and LCSD.18
     
    Conclusions
    Catecholaminergic polymorphic ventricular tachycardia is an uncommon but malignant cardiac arrhythmia that presents as syncope, seizure, or sudden cardiac death in childhood. In our study, 60% of patients experienced aborted cardiac arrest. One should suspect the diagnosis when syncope occurs during exercise or emotional stress. Similar to overseas studies, RyR2 mutation is the most common genetic mutation and affected 60% of our patients. Despite optimised medical therapy, 60% of patients still required LCSD or ICD implantation.
     
    Acknowledgements
    The expenses of genetic analysis were sponsored by the Children’s Heart Foundation of Hong Kong.
     
    Declaration
    All authors have no relevant conflicts of interest to disclose.
     
    References
    1. Ylänen K, Poutanen T, Hiippala A, Swan H, Korppi M. Catecholaminergic polymorphic ventricular tachycardia. Eur J Pediatr 2010;169:535-42. Crossref
    2. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002;106:69-74. Crossref
    3. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 1995;91:1512-9. Crossref
    4. Çeliker A, Erdoğan I, Karagöz T, Özer S. Clinical experiences of patients with catecholaminergic polymorphic ventricular tachycardia. Cardiol Young 2009;19:45-52. Crossref
    5. Swan H, Piippo K, Viitasalo M, et al. Arrhythmic disorder mapped to chromosome 1q42-q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol 1999;34:2035-42. Crossref
    6. Kung SW, Yung TC, Chiu WK. Successful resuscitation of out-of-hospital ventricular fibrillation cardiac arrest in an adolescent. Hong Kong J Emerg Med 2010;17:482-7.
    7. Lahat H, Eldar M, Levy-Nissenbaum E, et al. Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation 2001;103:2822-7. Crossref
    8. Postma AV, Denjoy I, Kamblock J, et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet 2005;42:863-70. Crossref
    9. Marjamaa A, Hiippala A, Arrhenius B, et al. Intravenous epinephrine infusion test in diagnosis of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol 2012;23:194-9. Crossref
    10. Sumitomo N, Harada K, Nagashima M, et al. Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart 2003;89:66-70. Crossref
    11. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet 2012;21:2759-67. Crossref
    12. van der Werf C, Zwinderman AH, Wilde AA. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace 2012;14:175-83. Crossref
    13. van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol 2011;57:2244-54. Crossref
    14. Wilde AA, Bhuiyan ZA, Crotti L, et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med 2008;358:2024-9. Crossref
    15. De Ferrari GM, Dusi V, Spazzolini C, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation 2015;131:2185-93. Crossref
    16. Miyake CY, Webster G, Czosek RJ, et al. Efficacy of implantable cardioverter defibrillators in young patients with catecholaminergic polymorphic ventricular tachycardia: success depends on substrate. Circ Arrhythm Electrophysiol 2013;6:579-87. Crossref
    17. Mohamed U, Gollob MH, Gow RM, Krahn AD. Sudden cardiac death despite an implantable cardioverter-defibrillator in a young female with catecholaminergic ventricular tachycardia. Heart Rhythm 2006;3:1486-9. Crossref
    18. van der Werf C, Wilde AA. Catecholaminergic polymorphic ventricular tachycardia: from bench to bedside. Heart 2013;99:497-504. Crossref

    Validity and reliability of the Chinese version of the Insulin Treatment Appraisal Scale among primary care patients in Hong Kong

    Hong Kong Med J 2016 Aug;22(4):306–13 | Epub 3 Jun 2016
    DOI: 10.12809/hkmj154737
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Validity and reliability of the Chinese version of the Insulin Treatment Appraisal Scale among primary care patients in Hong Kong
    KP Lee, FRACGP, MSc Mental Health (CUHK)
    Department of Family Medicine and Public Health Unit, Kowloon West Cluster, Hospital Authority, 118 Shatin Pass Road, Hong Kong
     
    This paper was presented at the Hospital Authority Convention, 18-19 May 2015, Hong Kong.
     
    Corresponding author: Dr KP Lee (ineric_2000@yahoo.com.hk)
     
     Full paper in PDF
    Abstract
    Introduction: Patients with diabetes mellitus often delay insulin initiation and titration due to psychological factors. This phenomenon is known as ‘psychological insulin resistance’. Tools that identify psychological insulin resistance are valuable for detecting its causes and can lead to appropriate counselling. The Insulin Treatment Appraisal Scale was initially developed for western populations and has been translated and validated to measure psychological insulin resistance in Taiwan (Chinese version of the Insulin Treatment Appraisal Scale, C-ITAS). The current study examined the prevalence of psychological insulin resistance and the validity of the C-ITAS in a local population.
     
    Methods: This cross-sectional study involved 360 patients with diabetes mellitus from a government-funded general out-patient clinic who completed the C-ITAS questionnaire. The total C-ITAS score was compared for patients with psychological insulin resistance and those without, and the internal consistency and test-retest reliability of the C-ITAS were calculated. An exploratory factor analysis was used to identify factors within the C-ITAS.
     
    Results: The prevalence of psychological insulin resistance was 44.9%. The internal consistency of the scale was high (Cronbach’s alpha=0.78). The test-retest reliability was positive with all C-ITAS questions (0.294-0.725). The mean C-ITAS score was significantly higher among patients with psychological insulin resistance than those without (42.42 vs 35.78; P<0.001). The exploratory factor analysis, however, failed to identify the two clear factors identified in the original validation study.
     
    Conclusions: The C-ITAS appears to be a feasible and potentially useful tool for identifying psychological insulin resistance, but additional validation or translation is required before it can be widely used clinically.
     
    New knowledge added by this study
    • The Chinese version of the Insulin Treatment Appraisal Scale (C-ITAS) is a potentially useful and reliable tool to understand patients’ underlying reasons for psychological insulin resistance (PIR).
    • Further validation of C-ITAS is needed.
    Implications for clinical practice or policy
    • Understanding patients’ PIR can lead to appropriate and patient-centred counselling.
    • Validation of C-ITAS can facilitate a comparison of local PIR studies with those in other countries.
     
     
    Introduction
    Type 2 diabetes mellitus (DM) is a prevalent and increasingly common disease worldwide.1 It is estimated to affect 10% of the Hong Kong (HK) population (approximately 700 000 people).2 Achieving satisfactory DM control during the early disease course can reduce DM-induced microvascular and macrovascular complications (ie the ‘legacy effect’).3 4 These benefits were maintained in patients in a tight DM-control group even though their glycosylated haemoglobin (HbA1c) level became similar to those in the control group after the end of the United Kingdom Prospective Diabetes Study.4 It was proposed that a ‘reverse legacy effect’ also persists: “intensive glycaemic intervention started late in the natural course of diabetes seems disappointingly ineffective in limiting cardiovascular events”.5 6 Very tight control may even result in mortality.7 8 Therefore, achieving tight HbA1c control early via lifestyle changes and the use of medications including insulin is important.
     
    Because of the progressive nature of DM, most patients eventually require insulin.9 Despite robust evidence of the benefits of early strict HbA1c control, patients often delay insulin initiation and titration. In a UK study, 50% of patients with DM delayed insulin initiation despite suboptimal control for 5 years, regardless of the presence of complications.10 Their reluctance to initiate insulin use10 11 12 and its subsequent titration13 is known as ‘psychological insulin resistance’ (PIR). The prevalence of PIR has been estimated to be higher in Singapore (70.6%)11 than in western countries (approximately 20%-40%).12 A HK survey of 97 participants found a similarly high prevalence of PIR (72.1%).14 Previous studies conducted in western countries have identified several factors that can lead to PIR.11 12 13 These reasons might differ in Asian countries, however.15 16 Recently, a local primary care research group developed a scale, Chinese Attitudes to Starting Insulin questionnaire, to identify barriers to insulin initiation in insulin-naïve patients with DM.16 These investigators found that Asian patients might be more affected by the availability of social support and that cultural differences might also play a role. For example, Chinese patients are more likely to combine western medical treatments with traditional Chinese medicine17 and might believe that hypoglycaemic agents cause renal toxicity.18
     
    Doctors, particularly primary care physicians, can be insensitive to patients’ psychological needs; physicians often fail to recognise psychological needs19 and might incorrectly identify the reasons for a patient’s PIR.20 21 Identifying one’s psychological needs might be hindered in HK due to short consultation times (lasting an average of 5-7 minutes per consultation). A limited number of longer sessions may be offered to DM patients with difficult glycaemic control, but the time limit would be 10 to 14 minutes. Therefore, a quick tool to help identify PIR and its underlying causes might help general practice physicians optimise care for their patients with DM.12 The Insulin Treatment Appraisal Scale (ITAS) was developed for this purpose.22 The Chinese version of the ITAS (C-ITAS) was validated in Taiwan,23 and has been used in Taiwan15 to investigate the underlying causes of PIR. Validating C-ITAS scores might enable direct comparisons of data between local and international studies. The C-ITAS might also be used to help local primary care clinicians identify PIR and offer appropriate counselling. The ITAS is sensitive to changes in PIR throughout the course of DM.24
     
    This study is the first to be conducted in HK to examine the prevalence of PIR and the validity and reliability of the C-ITAS in our local population.
     
    Methods
    This research has been approved by the Research Ethics Committee at Kowloon West Cluster, Hospital Authority.
     
    Participants
    Participants were recruited from a government-funded primary care general out-patient clinic in HK from July to September 2013. Written consent was obtained when the participants were approached by the research assistant. The investigator’s contact information was given to each participant if they had concerns after the administration of the questionnaire. Patients who fulfilled the following criteria were recruited: (1) diagnosed with type 2 DM as defined by the World Health Organization25 for ≥6 months; (2) aged 30 years or above; (3) of Chinese ethnicity; (4) able to communicate effectively in Cantonese or Mandarin; and (5) had the mental capacity to provide informed written consent. The exclusion criteria were severe sensory deficits, severe mental illness (eg dementia, psychosis, or mental retardation), or any other health condition that compromised the ability to comprehend and complete the questionnaire. The required sample size was calculated from the estimated prevalence rate of PIR in the primary care setting. To achieve a 95% confidence interval with a margin of error of 5% and an estimated 70% prevalence of PIR among patients with DM in public primary care,11 14 the required sample size was estimated to be 312 patients. To compensate for the predicted 20% refusal rate, at least 390 patients were recruited.
     
    A list of DM patients who would attend the clinic the next day was obtained daily. From that list, 40 patients were randomly selected by computer (25 in the morning and 15 in the afternoon). A reminder was set in the clinical computer system such that clinic staff were alerted once the patient attended his or her appointment. The procedure was repeated until the number of patients recruited exceeded 390, which was checked at clinic closing time.
     
    Patients were encouraged to complete the questionnaire unaided because the C-ITAS is self-administered. Because the majority of patients who attend public primary care clinics are of lower socio-economic status and education level, those who had difficulty completing the questionnaire were assisted by research assistants who were trained by the principal investigator.
     
    Each patient was asked whether he or she was willing to have insulin started or titrated upon his or her case doctor’s suggestion. The response options included “strongly unwilling”, “unwilling”, “might consider it”, “willing”, and “very willing”. Demographic data were collected, and clinical data (eg the presence of DM complications, insulin use, and control of DM and lipid levels) were retrieved from a computer database.
     
    Insulin Treatment Appraisal Scale
    The ITAS is a 20-item instrument that contains 16 negative and four positive statements that appraise insulin treatment. Each statement is ranked using a 5-point Likert-type scale from 1 to 5. Positive scores are reversed to allow for summation. The total possible score ranges from 0 to 80. A higher score signifies a more negative appraisal of insulin. The ITAS was developed for clinical use to measure PIR.22 No cut-off score is used to diagnose PIR. Of those who completed the clinical interview, 26 were selected for phone interview 2 to 4 weeks later to examine test-retest reliability. Because of the lack of a written language difference between Taiwan and HK, the validated C-ITAS was used with the permission of the Taiwan research group.
     
    Statistical analyses
    The C-ITAS was examined for its internal reliability using Cronbach’s alpha, the test-retest reliability was assessed using Pearson’s correlation of test scores and retest scores, and construct validity was assessed using an exploratory factor analysis (EFA) [using Oblimin rotation as this was used in the original development study of ITAS22]. Patients who answered “strongly unwilling” or “unwilling” to the question “Would you agree to start or titrate insulin treatment if advised by your case doctor?” were classified as having PIR. Descriptive statistics were used to describe the prevalence of PIR. Each C-ITAS item was dichotomised as “unwilling” (scores of 1 and 2) or “neutral/willing” (scores of 3 to 5); this dichotomy was created to assess the difference between patients with and without PIR. The responses of the patients with or without PIR were compared using a Chi squared test.
     
    Results
    Participants
    A total of 399 patients with DM were randomly selected from the clinical database and approached by the research team (Fig 1). Of them, 42 patients were excluded due to the following circumstances: two patients were incorrectly diagnosed with DM; 27 had severely impaired hearing not compensated for with the use of hearing aids; three spoke languages other than Cantonese or Mandarin; eight had severe psychiatric illness such as dementia, psychosis, or mental retardation; one left at the beginning of the interview when called into a consultation room; and one was excluded for checking all boxes of the questionnaire.
     

    Figure 1. Enrolment and outcomes of the study
     
    In addition to the insulin-naïve patients with DM who were recruited as outlined above, all of the current insulin users who were not interviewed during the above period (47 patients) were invited to participate in this study and were interviewed over the phone; of whom three were excluded for the following reasons: one could not speak Cantonese or Mandarin, one was out of HK during the interview period, and one questionnaire was invalid due to a missing subject case number.
     
    The overall response rate was 89.8% (n=360): 89.5% (n=314) for the insulin-naïve patients and 92.0% (n=46) for the insulin users. Other demographic data are shown in Table 1.
     

    Table 1. Demographic information of patients
     
    A total of 12.8% (n=46/360) of participants were insulin users. Patients with HbA1c ≥7% (≥53 mmol/mol; 21.6%) were more likely to be on insulin than those with HbA1c <7% (<53 mmol/mol; 2.9%; P<0.001). The HbA1c level was not significantly associated with the presence of DM complications in the current study. Of all participants, 96.3% received DM complication screening within 2 years, which was a nurse-led clinical service to screen for DM complications and provide counselling.
     
    Non-respondents were significantly older (mean age=72.32 vs 67.17 years, t test: P<0.001), less likely to agree to titrate insulin (for current insulin users), and less educated (91.7% educated up to primary level vs 68.9%; Chi squared test; P=0.004). The differences with regard to the other demographics, including DM complication rate, insulin use status, marriage, work, family income, and gender were not significant.
     
    The prevalence of PIR was 44.9% (141/314; 95% confidence interval [CI], 39.4% to 50.4%) in insulin-naïve patients; in contrast, the PIR rate was 6.8% (3/44; 95% CI, -0.64% to 14.24%) in current insulin users.
     
    The questionnaire
    The internal consistency of the C-ITAS questionnaire was high, with Cronbach’s alpha of 0.78. The original ITAS was designed to have 16 negative and four positive statements. Cronbach’s alpha was calculated separately for the negative and positive statements, yielding values of 0.812 and 0.738, respectively. Within the negative statement scale, removing two negatively stated questions individually, including Q1, “Insulin signifies failure with pre-insulin therapy”, and Q18, “Taking insulin causes family/friends to be more concerned” improved the overall Cronbach’s alpha to 0.819 and 0.825, respectively.
     
    Of the 20 individual questions within the C-ITAS, answers to 17 questions were significantly different in the expected direction between patients with PIR and those without. Importantly, Q18, “Taking insulin causes family/friends to be more concerned” was originally designed to detect a negative view towards insulin use; however, more insulin-accepting patients agreed with the statement (Table 2).
     

    Table 2. The Chinese version of the Insulin Treatment Appraisal Scale (C-ITAS) score differences between patients with and without psychological insulin resistance (only statistically significant results are shown; n=314)
     
    The total C-ITAS scores, as described above, were higher among participants who refused insulin initiation (42.42 vs 35.78; t test, P<0.001). The test-retest reliability for each question ranged from 0.294 to 0.725, and 13 questions were significant (P<0.05). The test-retest reliability of the overall scores as defined above was 0.571 (P=0.002).
     
    The EFA identified five factors with an eigenvalue of >1. Nonetheless, the scree plot correctly identified two factors within the questionnaire. When two factors were extracted using an Oblimin rotation, a few negative statements including Q18 were significantly associated with the other positive statements (Table 3). The three-, four-, and five-factor solutions were calculated as suggested by the eigenvalue, which did not provide better representation of the latent structure of ITAS.
     

    Table 3. Results of the exploratory factor analysis for Insulin Treatment Appraisal Scale using two factors (only factor loading >0.3 are shown)
     
    In the EFA, the Kaiser-Meyer-Olkin measure of sampling adequacy was 0.834 and Bartlett’s test of sphericity was significant (P<0.001), and signified adequate sample size for the test.
     
    Discussion
    Because the participants were old and not well educated, difficulties in answering the C-ITAS were expected. This assumption was further supported by the fact that the non-respondents were less educated and were older than the respondents. Nevertheless a high proportion of participants (89.8%) were able to complete the entire questionnaire. Additional research might be necessary to assess the response rate if the questionnaire is self-administered because the staffing at our public out-patient clinics was limited. The use of ITAS might be limited if it cannot be self-administered because it was developed as a self-administered tool.
     
    Prevalence of psychological insulin resistance
    It is surprising that the prevalence of PIR was not as high as reported by previous studies.11 14 More than 50% of patients were willing to consider or accept insulin if suggested by their primary doctor. This finding might be because of differences in the patient cohorts or the improvements made to the PIR over the years due to patient education. Only 53 patients with DM out of the thousands of patients followed up in our clinic were started on insulin. Alternative reasons might explain the low rates of insulin use (eg physician beliefs and competencies regarding the use of insulin), and might merit additional research.
     
    Validity and reliability of the questionnaire
    The C-ITAS was reliable because it yielded high Cronbach’s alpha scores (0.738-0.812) and correctly provided a higher score for patients who resisted insulin use. It identified many different attitudes towards insulin use; in the current study, answers to 17 out of 20 of the C-ITAS items significantly differed between patients who resisted insulin and those who did not, whereas a previous study showed that only four questions were able to make this distinction.12 This may be because individual patients had multiple concerns and many different attitudes towards insulin use.
     
    Although the test-retest reliability value of all ITAS items was positive, the values were low, ranging from 0.294 to 0.725 for individual C-ITAS questions. In the present study, the C-ITAS was completed either via a personal interview with a research assistant or by self-administration. Retests were administered via telephone interviews by either the research assistant or the principal investigator. Therefore, the low test-retest reliability scores might be because of the different means of administration or due to the different interviewers. Conversely, this difference might reflect the actual low test-retest reliability of the current C-ITAS that requires additional validation.
     
    Question 18, “Taking insulin causes family/friends to be more concerned”, merits additional discussion. Originally designed as a negative statement, it is expected that patient resistance to insulin would positively predict the score. The reverse was true, however, in the current study (Table 2). When the statement was reviewed by six family physicians and one psychiatrist, the word “concerned” (關心) was translated into a word in Chinese that can also mean “caring” (使用胰島素使家人和朋友對我更關心). It is likely that patients understood the question as, “Taking insulin causes my family and friends to be more caring toward me”. Because Q18 was meant to be a negative statement, it is more appropriate to translate its meaning to “worry”. This supposition is supported by both the Cronbach’s alpha analysis, in which exclusion of Q18 improved the value of Cronbach’s alpha, and the factor analysis, where Q18 was regarded as a factor with the other positive statements. The factor analysis did not show a two-factor structure within the ITAS, as in the previous study.22 As the factor analysis table notes (Table 3), when set as a two-factor construct, no trend can be drawn for these two groups. The factor analyses of the first study on the development of the ITAS22 and the validation study in Taiwan23 both showed a two-factor construct, with the two factors being positive statements and negative statements. This finding might reflect the previously noted translation problem; alternatively, our local community might have had a different set of causes for PIR. This finding suggests that a dialectic or cultural difference remains between HK and Taiwan, despite a shared written language.26 27 Additional validation of the C-ITAS in our local population is likely necessary.
     
    Strengths and weaknesses
    The strengths of our study include its large sample size, the use of random sampling, and the high response rate. The use of an internationally validated questionnaire might aid comparison with results from other countries. The C-ITAS, however, might require additional validation as noted above.
     
    The statement proposing the use of insulin to patients was hypothetical. For example, estimated PIR rates might be lower when patients perceive their disease as having deteriorated so that additional intervention is necessary.
     
    This study was conducted in a major government-funded clinic in Hong Kong, and the demographics of the participants were more similar to those of other government clinics than to the general population (Fig 2). The extent to which the results can be generalised to other countries and to other social classes (eg wealthy patients attending private primary clinics) is not known.
     

    Figure 2. Comparison of demographic data in 2013
     
    A majority of the patients in the current study were insulin-naïve. Despite including all available insulin users in the clinic, the number of insulin users was small, and limits the potential applicability of this study’s results to secondary or tertiary care where many patients may be on insulin.
     
    The study also did not distinguish between questionnaires that were completed with the help of research staff and those that were self-administered. The influence of different administration methods on the outcome has not been previously described. For example, when participants did not understand a statement, the trained research assistant may use her own words to elaborate and explain it to the participant and thus may alter the statement’s original sentence structure or intended meaning.
     
    Another weakness was that data on macrovascular complications were not collected. Microvascular complications were well documented during the DM complication screening and were easily traceable. The tracing of macrovascular complications, however, was difficult because diagnostic coding needed to be entered or the complication needed to be mentioned in the latest case record by the respective doctors, and missed coding for macrovascular complications was not uncommon.
     
    Conclusions
    The prevalence of PIR was 44.9% in our population, which is less than that previously estimated. Tools such as the C-ITAS can improve physician’s understanding of patient views on insulin and might help physicians to appropriately counsel their patients. The C-ITAS may provide clues to patients’ knowledge about insulin use, eg the risk of hypoglycaemia or the side-effects of obesity. Despite good psychometric properties such as high internal consistency, there is a translation issue in at least one of the 20 statements. Health care professionals who wish to use the C-ITAS clinically should be aware of the instrument’s limitations.
     
    Acknowledgements
    The author expresses gratitude to Prof Sandra Chan for her teaching and guidance regarding this research; to Prof Samuel Wong for his kind and timely advice; and to Drs YK Yiu and SN Fu and the Department of Family Medicine, Kowloon West Cluster, HK for their research support. The author would like to thank Ms Man-ping Chang and her team for the development of the C-ITAS and for allowing the use of the C-ITAS in the current study.
     
    Declaration
    The author has disclosed no conflicts of interest.
     
    References
    1. International Diabetes Federation. IDF diabetes atlas update 2012. Available from: http://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf. Accessed 1 Apr 2013.
    2. Hong Kong Department of Health. Hong Kong reference framework for diabetes care for adults in primary care settings. Available from: http://www.pco.gov.hk/english/resource/professionals_diabetes_pdf.html. Accessed 1 Apr 2013.
    3. Genuth S, Eastman R, Kahn R, et al. Implications of the United Kingdom prospective diabetes study. Diabetes Care 2003;26 Suppl 1:S28-32. Crossref
    4. Davis TM, Colagiuri S, United Kingdom Prospective Diabetes Study. The continuing legacy of the United Kingdom Prospective Diabetes Study. Med J Aust 2004;180:104-5.
    5. ADVANCE Collaborative Group, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-72. Crossref
    6. Riddle MC, Yuen KC. Reevaluating goals of insulin therapy: perspectives from large clinical trials. Endocrinol Metab Clin North Am 2012;41:41-56. Crossref
    7. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545-59. Crossref
    8. ACCORD Study Group, Gerstein HC, Miller ME, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med 2011;364:818-28. Crossref
    9. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999;281:2005-12. Crossref
    10. Rubino A, McQuay LJ, Gough SC, Kvasz M, Tennis P. Delayed initiation of subcutaneous insulin therapy after failure of oral glucose-lowering agents in patients with type 2 diabetes: a population-based analysis in the UK. Diabet Med 2007;24:1412-8. Crossref
    11. Wong S, Lee J, Ko Y, Chong MF, Lam CK, Tang WE. Perceptions of insulin therapy amongst Asian patients with diabetes in Singapore. Diabet Med 2011;28:206-11. Crossref
    12. Woudenberg YJ, Lucas C, Latour C, Scholte op Reimer WJ. Acceptance of insulin therapy: a long shot? Psychological insulin resistance in primary care. Diabet Med 2012;29:796-802. Crossref
    13. Jenkins N, Hallowell N, Farmer AJ, Holman RR, Lawton J. Participants’ experiences of intensifying insulin therapy during the Treating to Target in Type 2 diabetes (4-T) trial: qualitative interview study. Diabet Med 2011;28:543-8. Crossref
    14. Yiu MP, Cheung KL, Chan KW, et al. A questionnaire study to analyze the reasons of insulin refusal of DM patients on maximum dose of oral hypoglycemic agents (OHA) among 3 GOPCs in Kowloon West Cluster. 2010. Available from: http://www.ha.org.hk/haconvention/hac2010/proceedings/pdf/Poster/spp-p5-38.pdf. Accessed 1 Apr 2013.
    15. Chen CC, Chang MP, Hsieh MH, Huang CY, Liao LN, Li TC. Evaluation of perception of insulin therapy among Chinese patients with type 2 diabetes mellitus. Diabetes Metab 2011;37:389-94. Crossref
    16. Fu SN, Chin WY, Wong CK, et al. Development and validation of the Chinese Attitudes to Starting Insulin questionnaire (Ch-ASIQ) for primary care patients with type 2 diabetes. PLoS One 2013;8:e78933. Crossref
    17. Ma GX. Between two worlds: the use of traditional and western health services by Chinese immigrants. J Community Health 1999;24:421-37. Crossref
    18. Lai WA, Lew-Ting CY, Chie WC. How diabetic patients think about and manage their illness in Taiwan. Diabet Med 2005;22:286-92. Crossref
    19. Martin A, Rief W, Klaiberg A, Braehler E. Validity of the Brief Patient Health Questionnaire Mood Scale (PHQ-9) in the general population. Gen Hosp Psychiatry 2006;28:71-7. Crossref
    20. Peyrot M, Rubin RR, Khunti K. Addressing barriers to initiation of insulin in patients with type 2 diabetes. Prim Care Diabetes 2010;4 Suppl 1:S11-8. Crossref
    21. Brod M, Kongsø JH, Lessard S, Christensen TL. Psychological insulin resistance: patient beliefs and implications for diabetes management. Qual Life Res 2009;18:23-32. Crossref
    22. Snoek FJ, Skovlund SE, Pouwer F. Development and validation of the insulin treatment appraisal scale (ITAS) in patients with type 2 diabetes. Health Qual Life Outcomes 2007;5:69. Crossref
    23. Chang MP, Huang CY, Li TC, Liao LN, Chen CC. Validation of the Chinese version of the insulin treatment appraisal scale. J Diabetes Investig 2010;1(Suppl 1):88.
    24. Hermanns N, Mahr M, Kulzer B, Skovlund SE, Haak T. Barriers towards insulin therapy in type 2 diabetic patients: results of an observational longitudinal study. Health Qual Life Outcomes 2010;8:113. Crossref
    25. World Health Organization. About diabetes 2013. Available from: http://www.who.int/diabetes/action_online/basics/en/index1.html. Accessed 1 Feb 2013.
    26. Chow KM, Chan CW, Choi KC, et al. Psychometric properties of the Chinese version of Sexual Function After Gynecologic Illness Scale (SFAGIS). Support Care Cancer 2013;21:3079-84. Crossref
    27. Tang DY, Liu AC, Leung MH, Siu BW. Antisocial Personality Disorder Subscale (Chinese version) of the Structured Clinical Interview for the DSM-IV Axis II disorders: validation study in Cantonese-speaking Hong Kong Chinese. East Asian Arch Psychiatry 2013;23:37-44.

    Colorectal endoscopic submucosal dissection at a low-volume centre: tips and tricks, and learning curve in a district hospital in Hong Kong

    Hong Kong Med J 2016 Jun;22(3):256–62 | Epub 6 May 2016
    DOI: 10.12809/hkmj154736
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Colorectal endoscopic submucosal dissection at a low-volume centre: tips and tricks, and learning curve in a district hospital in Hong Kong
    Deon HM Chong, FRCSEd; CM Poon, FRCSEd; HT Leong, FRCSEd
    Department of Surgery, North District Hospital, Sheung Shui, Hong Kong
     
    Corresponding author: Dr HT Leong (lamyn@ha.org.hk)
     
     Full paper in PDF
     
    Click here to watch a video clip showing colorectal endoscopic submucosal dissection
     
    Abstract
    Introduction: Colorectal endoscopic submucosal dissection is not a widely adopted procedure due to its technical difficulties. This study aimed to share the experience in setting up this novel procedure and to report the learning curve for such a procedure at a low-volume district hospital in Hong Kong.
     
    Methods: This case series comprised 71 colorectal endoscopic submucosal dissections that were performed by a single endoscopist without experience in gastric or colorectal endoscopic submucosal dissection. Lesion characteristics, procedure time per unit area of tumour, en-bloc resection rate, R0 resection rate, complications, and length of stay were recorded prospectively. Results were compared for two consecutive periods to study the learning curve.
     
    Results: Overall, 41 (57.7%) tumours were located in the right colon, 21 (29.6%) in the left colon, and nine (12.7%) in the rectum. The median tumour area was 4 cm2 (range, 0.25-16 cm2). The median operating time was 105 (range, 47-342) minutes. The median procedure time per unit area of tumour was 24.9 min/cm2. There was one instance of intra-operative bleeding that required conversion to laparoscopic colectomy. There was no postoperative haemorrhage. The overall perforation rate was 15.5%, in which one required conversion to laparoscopic colectomy. The overall morbidity rate was 16.9% and there was no mortality. The median hospital stay was 1 day (range, 0-11 days). The overall en-bloc resection rate and R0 resection rate was 81.2% and 58.0%, respectively. Comparison of the two study periods revealed that procedure time per unit area of tumour decreased significantly from 31.5 min/cm2 to 21.5 min/cm2 (P=0.032). The en-bloc resection rate improved from 78.8% to 83.3% (P=0.15). The R0 resection rate improved significantly from 39.4% to 75.0% (P<0.01).
     
    Conclusion: Untutored colorectal endoscopic submucosal dissection is feasible with acceptable clinical outcomes at a low-volume district hospital in Hong Kong.
     
    New knowledge added by this study
    • Untutored colorectal endoscopic submucosal dissection (ESD) has an acceptable clinical outcome after 35 procedures at a low-volume centre.
    Implications for clinical practice or policy
    • ESD can be safely performed at a low-volume centre.
    • ESD can be started at the colorectum instead of the stomach.
     
     
    Introduction
    For many years, conventional endoscopic mucosal resection (EMR) and surgery were the only options for treating a large (>20 mm) sessile or flat colorectal lesion. Conventional EMR, however, often results in piecemeal removal and there is a significant local recurrence rate ranging from 7.4% to 17%.1 2 3 Full histological evaluation is also difficult.
     
    Endoscopic submucosal dissection (ESD), pioneered in Japan for treating early upper gastro-intestinal malignancy, was introduced in the late 1990s by Yamamoto et al4 and Fujishiro et al5 to treat colorectal lesions. The technique has an advantage over EMR in that its effectiveness is not limited by size or shape of the lesion. In the past decade, colorectal ESD has been shown to be superior to EMR, in terms of higher en-bloc resection rate and lower recurrence rate.6 Colorectal ESD can be applied not only to adenoma, but also to intramucosal carcinoma and low-risk submucosal carcinoma, as defined by the Paris classification7 and the Japanese Society for Cancer of the Colon and Rectum.8 Recently, a large-scale multicentre study has shown that ESD alone is adequate in the management of patients with low-risk submucosal carcinoma and achieves an excellent 5-year recurrence-free survival of 98% and 5-year overall survival of 94%.9
     
    Despite the growing evidence to support the use of colorectal ESD, it is not established as a standard treatment outside Japan. The drawbacks of colorectal ESD include longer operating time6 and higher complication rates, especially perforation. Although the perforation rate of ESD is much higher than that of EMR, most ESD perforations can be treated conservatively by clip closure during endoscopy.10 11 In a multicentre study of iatrogenic perforations in Japan, the respective EMR and ESD perforation rate was 0.58% and 14% in 15 160 therapeutic colonoscopies.12 Endoscopic clipping failed in 43.5% of ESD perforations and surgical intervention was necessary.12
     
    Perhaps one of the major hurdles to its general application is that it is a technically demanding procedure that is difficult to set up at a low-volume district hospital. We would like to share our experience of applying this novel technique in a district hospital in Hong Kong.
     
    Methods
    Case selection
    North District Hospital was a district hospital serving 700 000 population with a case volume of 15 to 20 cases of ESD per year. Since the introduction of the ESD technique at the hospital in 2009, all lateral spreading tumours larger than 2 cm or those unable to be resected en bloc by conventional polypectomy were referred to a single endoscopist to determine the appropriateness of ESD. Colonoscopy was repeated by a single endoscopist to determine the location, size, and nature of each tumour by white-light and narrow band imaging (NBI). Benign polyps not amendable to removal by EMR were triaged to ESD. Target biopsy was performed on Sano III lesions that were triaged to conventional laparoscopic colectomy. No tumours were excluded based on location.
     
    Preoperative evaluation of the depth of invasion
    Evaluation of the depth of invasion is important to determine the treatment strategy. To predict the depth of invasion, we used NBI colonoscopy, based on Sano’s capillary pattern classification. The underlying principle is that angiogenesis is critical for transition of a premalignant lesion to a malignant one and the microcapillary pattern changes in this process. Sano et al13 focused on this microcapillary difference based on their histopathological findings and devised three classifications: types I, II, and III. Type III was further subdivided into IIIA and IIIB.14
     
    The diagnostic accuracy of NBI colonoscopy in differentiating a neoplastic from non-neoplastic lesion is superior to conventional colonoscopy and equivalent to chromoendoscopy using indigocarmine.15 For estimation of the depth of invasion, the sensitivity, specificity, and diagnostic accuracy of capillary pattern type III for differentiating pM-ca (intramucosal) or pSM1 (superficial) from pSM2-3 (deep) was 84.8%, 88.7% and 87.7%, respectively.14 We preferred NBI colonoscopy because it is fast and easy to use, without the need to spray dye as in chromoendoscopy.
     
    Preparation
    The procedure was performed in the operating theatre with the patient under conscious sedation. All patients were assessed by an anaesthetist in a preoperation clinic.
     
    Patients were instructed to eat a low-residue diet 2 days before the procedure and a fluid diet on the day before ESD. Bowel preparation with 4 L polyethylene glycol solution was given on the day before ESD. Prophylactic antibiotics were not prescribed.
     
    Setting
    All procedures were performed in the operating theatre. This ensured that all equipment was on hand should conversion to an open procedure be required, for example, if there was full-thickness perforation that could not be closed endoscopically.
     
    Endoscopic system
    In our hospital, ESD was performed using a single-channel colonoscope (CF-H180AL; Olympus, Tokyo, Japan). This colonoscope was a high-density television compatible with a wide angle of 170°, 3.7-mm instrument channel, and auxiliary water jet. A short transparent hood was fitted to the tip of the endoscope so that the whole ring could be seen in endoscopic view. Carbon dioxide was used for insufflation to decrease patient discomfort. We used a high-frequency electrosurgical generator (ESG-100; Olympus, Tokyo, Japan) with a peristaltic pump (AFU-100; Olympus, Tokyo, Japan). The energy setting used for incision and dissection was “forced coagulation 2” 30W, whereas “soft coagulation” 100W was used for haemostasis.
     
    Cutting devices
    In our initial practice, we used the Flex Knife (KD-630L; Olympus, Tokyo, Japan) to perform the procedure. It had a loop-shaped tip that allowed easy control in any direction, as it was soft and flexible. Nonetheless, we found it difficult to adjust the length of the tip and there was frequent accumulation of debris around the tip. We then changed to Dual Knife (KD-650L; Olympus, Tokyo, Japan) with a fixed length (1.5 mm) and hence a more stable knife movement. More recently, we have used Flush Knife BT (DK2618JB/DK2618JN; Fujifilm, Saitama, Japan) for dissection. It has a ball tip of fixed length that touches a wider part of tissue and enhances haemostasis. The knife has a water jet channel and achieves two purposes: (1) it can wash away any tissue that accumulates around the tip, thereby maintaining the sharpness of the knife; and (2) submucosal normal saline injection can be performed without the need to change the instrument for further hyaluronate injection.
     
    Injecting agent
    We used a mixture of 10% sodium hyaluronate (LG Chemical, South Korea) and 1:200 000 adrenaline saline at a ratio of 1:1.5. This solution was chosen for three reasons: the addition of adrenaline can produce a haemostasis effect; dilution of sodium hyaluronate made it less viscous and thus easier to inject; and it reduced the amount used of the relatively more expensive sodium hyaluronate.
     
    Endoscopist
    All ESD procedures were performed by a single experienced endoscopist who had performed more than 500 therapeutic colonoscopic procedures and more than 200 laparoscopic colectomies. The ESD procedure was implemented by the endoscopist following completion of training on an animal model in the Second Master Workshop on Novel Endoscopic Technology & Endoscopic Submucosal Dissection in 2009 at Prince of Wales Hospital in Hong Kong, which was organised by the Department of Surgery, The Chinese University of Hong Kong (http://www.surgery.cuhk.edu.hk/events/2009-07-22-ESD.pdf). The workshop included both lecture sessions and hands-on sessions to perform ESD in a pig. The endoscopist had no experience in gastric or colorectal ESD. He received further overseas training in ESD in 2011 at Osaka Medical Center for Cancer and Cardiovascular Diseases in Japan as a clinical observer with hands-on animal model training.
     
    Procedure
    With the patient initially lying in the left lateral position, a full colonoscopy was first performed to confirm and locate the site of pathology. Patients were then re-positioned such that the lesion was at an anti-gravitational position in the endoscopic view at 6 o’clock. This could be easily achieved by seeing the injected water pooling opposite to the lesion. In this position, the gravitational force aided in retracting the lesion away from the submucosal plane during dissection. We then injected 1:100 000 adrenaline saline at 1 cm distal to the lesion, aiming at the submucosal layer. This could be ascertained by seeing the formation of a dwell. With the injecting needle still in situ, the solution was then changed to the mixture of adrenaline saline and sodium hyaluronate to provide a precipitous elevation of sufficient height. After elevating the lesion, a mucosal incision was made proximal to the lesion. The mucosal incision was started at the proximal two thirds of the lesion. After mucosal incision, the submucosal plane was dissected with the submucosa dissected away from the muscle layer. Care was taken to manipulate the dissection plan parallel to the intestinal wall to prevent perforation. When a more than 1-mm diameter vessel was detected, it was coagulated using haemostasis forceps (Radial Jaw 4; Boston Scientific, US). When the flap was sufficient for retraction, the mucosal incision was completed. In case of perforation, the defect was closed with endoscopic clipping (EZ Clip; Olympus, Tokyo, Japan). The resected area was not closed as healing usually occurred in a few weeks without complications.16
     
    Histological assessment
    All specimens were pinned on a piece of foam and fixed in formalin. Histological type, depth of invasion, as well as lateral and vertical resection margins were recorded. En-bloc resection was defined as one-piece resection of an entire lesion as observed endoscopically. R0 resection was defined as clear lateral and vertical resection margin.
     
    Post–endoscopic submucosal dissection
    All patients were allowed to resume a full diet on the same day. We performed no routine blood tests or imaging and patients were discharged the next day if there were no signs of perforation or haemorrhage. Postoperative haemorrhage was defined as clinical evidence of bleeding manifested by melena or haematochezia that required endoscopic haemostasis within 0 to 14 days of the procedure.11
     
    Follow-up
    All patients were followed up in clinic 2 weeks later to review the pathology report. Additional surgery would be offered in case of carcinoma with one of the following criteria: (1) margin involved; (2) >1 mm submucosal invasion; (3) positive lymphovascular permeation; (4) poorly differentiated adenocarcinoma, signet ring cell carcinoma, or mucinous carcinoma; or (5) high-grade tumour budding.17 Surveillance colonoscopy was performed 1 year after ESD.
     
    Statistical analysis
    All continuous variables were described as median and range. To study the learning curve, all patients were grouped chronologically into two periods: group 1 with cases 1 to 35; and group 2 with cases 36 to 71. Comparisons between non-parametric data were done with Mann-Whitney U test, while Chi squared test was used for categorical variables. A P value of <0.05 was considered statistically significant.
     
    Results
    From March 2009 to December 2013, a total of 71 ESDs were performed. Characteristics of the patients are shown in Table 1.
     

    Table 1. Characteristics of patients undergoing endoscopic submucosal dissection
     
    There was one conversion to laparoscopic colectomy due to intra-operative bleeding that could not be controlled endoscopically (40 mm x 15 mm tumour at the transverse colon). For perforation, there were 11 (15.5%) perforations: eight in the colon and three in the rectum, all were noticed during the ESD. Endoscopic clipping was successful in 10 of the perforations. The median number of clips used was 2 (range, 1-6). One perforation required conversion to laparoscopic colectomy (30 mm x 5 mm tumour at the sigmoid colon). Both laparoscopic operations were uneventful and patients were discharged without any surgical complications. The overall morbidity rate was 16.9% including bleeding and perforation and there was no mortality. The median postoperative stay was 1 day (range, 0-11 days).
     
    Of the 69 patients who completed the endoscopic procedure, en-bloc resection was successful in 56 (81.2%) patients, of whom 19 (27.5%) required additional snare (SD-210U-25, Snare Master; Olympus, Tokyo, Japan) to complete the en-bloc resection. Conversion to piecemeal resection by snare occurred in 14 (20.3%) patients.
     
    In these 69 patients, the resection margin was unclear in 15 patients as it was too close to the cauterised edge. These, together with piecemeal resection, were classified as R1 (29 patients in total). R0 resection was achieved in 40 (58.0%) patients. The histopathological diagnosis was tubular adenoma for 26 (36.6%) tumours, tubulovillous adenoma for 28 (39.4%), villous adenoma for two (2.8%), serrated adenoma for six (8.5%), carcinoid for one (1.4%) with involved margin, intramucosal carcinoma for two (2.8%), and carcinoma with submucosal invasion for six (8.5%). The ESD procedure was considered curative for the two patients with intramucosal carcinoma. One patient who had submucosal carcinoma refused further treatment because of a subsequent diagnosis of primary lung cancer. All other patients with submucosal carcinoma had curative interval laparoscopic surgeries. There was no residual tumour and no lymph node involvement found in the surgical specimen for any of these patients. The patient with rectal carcinoid also underwent subsequent interval laparoscopic total mesorectal excision: the pathology was well-differentiated carcinoid with invasion to the muscularis propria. There was one lymph node metastasis out of 11 lymph nodes retrieved.
     
    Recurrence and surveillance colonoscopy
    After excluding the six interval surgeries and two conversions to laparoscopic colectomy, the remaining 63 patients were offered colonoscopy surveillance of whom four refused and one defaulted from follow-up. Until August 2014, 51 patients had undergone surveillance colonoscopy and seven were awaiting colonoscopy. Recurrence of polyp occurred in seven (13.7%) out of 51 patients: three recurrences occurred after piecemeal resection, another three recurrences occurred after additional snare to complete the en-bloc resection. All three cases had uncertain margin due to proximity to the cauterised edge. In one patient, recurrence occurred after successful en-bloc resection by ESD, in which the deep margin was clear but the circumferential margin was not certain.
     
    Learning curve between the two chronological groups
    All patients were grouped chronologically into two periods: group 1 with cases 1 to 35; and group 2 with cases 36 to 71. The comparison between the two groups is shown in Table 2. The median procedure time per unit area of tumour improved significantly from 31.5 min/cm2 to 21.5 min/cm2 (P=0.032).
     

    Table 2. Comparison between the two chronological groups
     
    There were three (8.6%) perforations in group 1; one of them required conversion to laparoscopic colectomy. There were eight (22.2%) perforations in group 2; all managed successfully by endoscopic clipping. There was no significant difference in perforation rate (P=0.054). The intra-operative bleeding that required a conversion to laparoscopic colectomy also belonged to group 1.
     
    For the 33 patients in group 1 who completed the endoscopic procedure, en-bloc resection was successful in 26 (78.8%), while 30 (83.3%) out of 36 patients in group 2 had successful en-bloc resection. This trend of improvement, however, did not reach statistical significance (P=0.15). Among these successful en-bloc resections, 15 (57.7%) out of 26 patients in group 1 and four (13.3%) out of 30 patients in group 2 required additional snare to complete the en-bloc resection (P<0.01).
     
    R0 resection rate had improved significantly in group 2 despite a lower rate of snare application: 13 (39.4%) of 33 patients in group 1 had R0 resection, whereas in group 2, 27 (75.0%) of 36 patients had R0 resection (P<0.01).
     
    The median postoperative stay was 1 day in both groups and was not significantly different (P=0.25). The median postoperative stay in patients with perforation in group 1 and group 2 was 1 day (range, 1-7 days) and 2 days (range, 1-11 days), respectively (P=0.73).
     
    Discussion
    Colorectal ESD has been shown to be feasible and safe when performed at expert centres in Japan. In a recent prospective multicentre cohort study involving 1111 patients in Japan, the reported en-bloc resection rate was 88% and R0 resection rate was 89%.11 The total perforation rate was only 5.3% and postoperative bleeding was 1.5%.11 Nonetheless, these excellent results are largely reported from Japan. Colorectal ESD is technically difficult, as the lumen is narrow and angulated and the very thin wall presents a high risk of perforation. In Japan, endoscopists are first required to gain experience in gastric ESD, which is technically less demanding, before they move on to colorectal ESD.18 This is not possible in western and Asian countries outside Japan, where early gastric cancer is much less prevalent. In a recent review of 82 rectosigmoid ESD from a tertiary centre in Germany, the en-bloc resection rate and R0 resection rate was only 81.6% and 69.7%, respectively.19 This reflects the difficulty in generalising this novel procedure in other counties outside Japan, and an even greater challenge to low-volume district centres that lack local expertise.
     
    The low case volume and the absence of expertise in western countries leads to the development of untutored colorectal ESD when it is impossible to have a step-up approach in ESD training starting from the stomach before proceeding to colon. The reported learning curve for untutored colorectal ESD has an acceptable outcome, however. Berr et al20 reported a case series of 48 colorectal ESDs with 76% en-bloc resection, 14% perforation, and 4% requirement for surgical intervention. This compared favourably with results in Japan.11 Another learning curve study of colorectal ESD found procedure time could be significantly shorter after 25 procedures.21
     
    With a similar situation in Hong Kong, this study showed that untutored colorectal ESD is safe and feasible. Results demonstrated obvious improvement after 35 procedures, as evidenced by the significant reduction in combined ESD and EMR with snare from 45.5% to 11.1%. Procedure time per unit area of tumour as well as R0 resection rate also significantly improved after 35 cases. Although there were more perforations in group 2, it did not determine adverse outcome. None of the perforations in group 2 required conversion to laparoscopic colectomy. There was no significant impact on hospital stay. The higher perforation rate in group 2 may reflect a second learning curve to perform a complete ESD procedure without the assistance of a hybrid technique to achieve a reasonable R0 resection rate. A perforation rate comparable with the Japanese series11 is expected in the third tranche of 35 patients.
     
    Contrary to perforations in traditional therapeutic colonoscopies, all perforations in ESD were only 1 to 2 mm in size and were noticed intra-operatively, thus immediate endoscopic repair was possible. No patient required surgical intervention solely for treatment of perforation. The only conversion to laparoscopic colectomy in the initial learning curve aimed to offer one-stop treatment rather than treating perforations. In a multicentre review of colonoscopic perforations by Teoh et al,22 43 (0.113%) perforations were found in 37 971 colonoscopies. Only seven (43.8%) out of 16 therapeutic colonoscopic perforations were noticed during the endoscopic procedure. The mean size of perforation was 0.98 cm. The overall 30-day morbidity and mortality rate was 48.7% and 25.6%, respectively and the stoma rate was 38.5%. This showed clearly that surgical outcome was much worse in conventional colonoscopic perforations compared with perforations in ESD, despite a much higher perforation rate of 15.7% in ESD group.22
     
    After implementation of the ESD service, the following were noted:
    (1) Venue of procedure—operating theatre was chosen instead of an endoscopic unit to enable conversion to conventional laparoscopic colectomy without the need to change location as well as the ready availability of an anaesthetist to give conscious sedation.
    (2) Mode of anaesthesia—in the first few patients, we performed ESD under general anaesthesia for patient comfort and in the event conversion to laparoscopic colectomy was necessary. Positioning of patients was clumsy particularly when a prone position was needed to perform the procedure. Subsequently conscious sedation by an anaesthetist was used instead. Patients could follow instructions for positioning and deeper sedation could be achieved if necessary. There were no complaints from patients about any discomfort during the procedure.
    (3) Choice of injecting agents—albumin 20% (Albumex 20; CSL, Australia) was used as submucosal injecting agent in the first few patients when sodium hyaluronate was not available. Albumin 20% has both a good cushioning effect without any inflammatory effect and the cost was much cheaper at HK$2.7/mL compared with commercially available sodium hyaluronate at HK$68/mL.23 Yet sodium hyaluronate has the longest lasting cushioning effect among all injecting agents. We recommend its use whenever available.
    (4) A mixture of adrenaline saline and sodium hyaluronate was favourable for the assistant to inject and a lesser volume of sodium hyaluronate was required. Moreover, there were no instances of postoperative haemorrhage, although it was difficult to conclude whether this was due to the addition of adrenaline saline.
    (5) Endoscopic technique—in our initial practice, we performed a full circumferential mucosal incision before submucosal dissection. We noticed it was technically more difficult compared with a two-third circumferential incision, because firstly, the submucosal elevation was lost quickly due to faster leakage of injecting agent, and secondly, it was difficult to retract the lesion at the end of dissection, and we had to complete the en-bloc resection with snare. After changing to two-third circumferential incision in the second period of the study, the need for additional snare to complete the en-bloc resection was significantly decreased (from 57.7% to 13.3%).
    (6) Postoperative management—it was feasible and safe to resume diet immediately after the procedure and discharge patients the day following ESD without the need for routine blood taking or imaging. In one study from Japan, abdominal computed tomography was performed on day 1 and blood tests were carried out for 2 consecutive days. Oral intake was gradually stepped up and patients were discharged 5 days after ESD.10 In contrast, we allowed full diet on the same day after ESD and did not perform computed tomography or blood tests routinely. Our overall median postoperative stay was 1 day. Further development of ESD as a day procedure can be explored.
     
    There are a number of limitations in this study. First, this was the learning curve of a single endoscopist and 35 procedures may not be a typical number required for such a learning curve. Second, the inclusion criteria for colorectal ESD were less strict than those in Japan. Lesion less than 2 cm that could not be removed en bloc would be subjected to ESD instead of piecemeal resection. These kinds of lesion were expected to be easier with shorter operating time. Third, this was a retrospective comparison of two chronological groups which might not have been directly comparable. Lastly, the 7.9% patient default rate may lead to underestimation of recurrence in this series.
     
    Conclusion
    Untutored colorectal ESD at a low-volume centre was an option in the absence of enough experts to supervise the procedure. Training on an animal model and clinical observation of real-time demonstrations was useful to start ESD without supervision. A cut-off at 35 procedures showed an acceptable R0 resection rate at a significantly improved procedure time per unit area. There was a second learning curve to achieve a complete ESD procedure without EMR at a higher perforation rate. Colorectal ESD performed by a colorectal surgeon enables any complications to be managed by the same operator, or any lesion unresectable by ESD to be surgically removed. It was not necessary to first perform gastric ESD as the start of ESD training. When more endoscopists have gained experience in colorectal ESD, a structured training programme with accreditation can be established.
     
    Declaration
    All authors have disclosed no conflicts of interest.
     
    References
    1. Tanaka S, Haruma K, Oka S, et al. Clinicopathological features and endoscopic treatment of superficially spreading colorectal neoplasms larger than 20 mm. Gastrointest Endosc 2001;54:62-6. Crossref
    2. Walsh RM, Ackroyd FW, Shellito PC. Endoscopic resection of large sessile colorectal polyps. Gastrointest Endosc 1992;38:303-9. Crossref
    3. Uraoka T, Fujii T, Saito Y, et al. Effectiveness of glycerol as a submucosal injection for EMR. Gastrointest Endosc 2005;61:736-40. Crossref
    4. Yamamoto H, Kawata H, Sunada K, et al. Successful en-bloc resection of large superficial tumors in the stomach and colon using sodium hyaluronate and small-caliber-tip transparent hood. Endoscopy 2003;35:690-4. Crossref
    5. Fujishiro M, Yahagi N, Kakushima N, et al. Outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms in 200 consecutive cases. Clin Gastroenterol Hepatol 2007;5:678-83. Crossref
    6. Saito Y, Fukuzawa M, Matsuda T, et al. Clinical outcome of endoscopic submucosal dissection versus endoscopic mucosal resection of large colorectal tumors as determined by curative resection. Surg Endosc 2010;24:343-52. Crossref
    7. The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. Gastrointest Endosc 2003;58(6 Suppl):S3-43.
    8. Watanabe T, Itabashi M, Shimada Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. Int J Clin Oncol 2012;17:1-29. Crossref
    9. Yoda Y, Ikematsu H, Matsuda T, et al. A large-scale multicenter study of long-term outcomes after endoscopic resection for submucosal invasive colorectal cancer. Endoscopy 2013;45:718-24. Crossref
    10. Yoshida N, Wakabayashi N, Kanemasa K, et al. Endoscopic submucosal dissection for colorectal tumors: technical difficulties and rate of perforation. Endoscopy 2009;41:758-61. Crossref
    11. Saito Y, Uraoka T, Yamaguchi Y, et al. A prospective, multicenter study of 1111 colorectal endoscopic submucosal dissections (with video). Gastrointest Endosc 2010;72:1217-25. Crossref
    12. Taku K, Sano Y, Fu KI, et al. Iatrogenic perforation associated with therapeutic colonoscopy: a multicenter study in Japan. J Gastroenterol Hepatol 2007;22:1409-14. Crossref
    13. Sano Y, Muto M, Tajiri H, et al. Optical/digital chromoendoscopy during colonoscopy using narrow-band image system. Dig Endosc 2005;17(Suppl):S43-8. Crossref
    14. Ikematsu H, Matsuda T, Emura F, et al. Efficacy of capillary pattern type IIIA/IIIB by magnifying narrow band imaging for estimating depth of invasion of early colorectal neoplasms. BMC Gastroenterol 2010;10:33. Crossref
    15. Machida H, Sano Y, Hamamoto Y, et al. Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy 2004;36:1094-8. Crossref
    16. Iguchi M, Yahagi N, Fujishiro M, et al. The healing process of large artificial ulcers in the colorectum after endoscopic mucosal resection [abstract]. Gastrointest Endosc 2003;57:AB226.
    17. Asano M. Endoscopic submucosal dissection and surgical treatment for gastrointestinal cancer. World J Gastrointest Endosc 2012;4:438-47. Crossref
    18. Tanaka S, Tamegai Y, Tsuda S, Saito Y, Yahagi N, Yamano HO. Multicenter questionnaire survey on the current situation of colorectal endoscopic submucosal dissection in Japan. Dig Endosc 2010;22 Suppl 1:S2-8. Crossref
    19. Probst A, Golger D, Anthuber M, Märkl B, Messmann H. Endoscopic submucosal dissection in large sessile lesions of the rectosigmoid: learning curve in a European center. Endoscopy 2012;44:660-7. Crossref
    20. Berr F, Wagner A, Kiesslich T, Friesenbichler P, Neureiter D. Untutored learning curve to establish endoscopic submucosal dissection on competence level. Digestion 2014;89:184-93. Crossref
    21. Białek A, Pertkiewicz J, Karpińska K, Marlicz W, Bielicki D, Starzyńska T. Treatment of large colorectal neoplasms by endoscopic submucosal dissection: a European single-center study. Eur J Gastroenterol Hepatol 2014;26:607-15. Crossref
    22. Teoh AY, Poon CM, Lee JF, et al. Outcomes and predictors of mortality and stoma formation in surgical management of colonoscopic perforations: a multicenter review. Arch Surg 2009;144:9-13. Crossref
    23. ASGE Technology Committee, Kantsevoy SV, Adler DG, Conway JD, et al. Endoscopic mucosal resection and endoscopic submucosal dissection. Gastrointest Endosc 2008;68:11-8. Crossref

    Diagnostic accuracy of spot urine protein-to-creatinine ratio for proteinuria and its association with adverse pregnancy outcomes in Chinese pregnant patients with pre-eclampsia

    Hong Kong Med J 2016 Jun;22(3):249–55 | Epub 6 May 2016
    DOI: 10.12809/hkmj154659
    © Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
     
    ORIGINAL ARTICLE
    Diagnostic accuracy of spot urine protein-to-creatinine ratio for proteinuria and its association with adverse pregnancy outcomes in Chinese pregnant patients with pre-eclampsia
    HC Cheung, MB, BS, MRCOG1; KY Leung, FRCOG, FHKAM (Obstetrics and Gynaecology)1; CH Choi, FHKCP, FHKAM (Medicine)2
    1 Department of Obstetrics and Gynaecology, Queen Elizabeth Hospital, Jordan, Hong Kong
    2 Department of Medicine, Queen Elizabeth Hospital, Jordan, Hong Kong
     
    Corresponding author: Dr HC Cheung (chc670@ha.org.hk)
     
     Full paper in PDF
    Abstract
    Introduction: International guidelines have endorsed spot urine protein-to-creatinine ratio of >30 mg protein/mmol creatinine as an alternative to a 24-hour urine sample to represent significant proteinuria. This study aimed to determine the accuracy of spot urine protein-to-creatinine ratio in predicting significant proteinuria and adverse pregnancy outcome.
     
    Methods: This case series was conducted in a regional obstetric unit in Hong Kong. A total of 120 Chinese pregnant patients with pre-eclampsia delivered at Queen Elizabeth Hospital from January 2011 to December 2013 were included. Relationship of spot urine protein-to-creatinine ratio and 24-hour proteinuria; accuracy of the ratio against 24-hour urine protein at different cut-offs; and relationship of such ratio and adverse pregnancy outcome were studied.
     
    Results: Spot urine protein-to-creatinine ratio was correlated with 24-hour urine protein with Pearson correlation coefficient of 0.914 (P<0.0001) when the ratio was <200 mg/mmol. The optimal threshold of spot urine protein-to-creatinine ratio for diagnosing proteinuria in Chinese pregnant patients (33 mg/mmol) was similar to that stated in the international literature (30 mg/mmol). A cut-off of 20 mg/mmol provided a 100% sensitivity, and 52 mg/mmol provided a 100% specificity. There was no significant difference in spot urine protein-to-creatinine ratio between cases with and without adverse pregnancy outcome.
     
    Conclusions: Spot urine protein-to-creatinine ratio had a positive and significant correlation with 24-hour urine results in Chinese pre-eclamptic women when the ratio was <200 mg/mmol. Nonetheless, this ratio was not predictive of adverse pregnancy outcome.
     
    New knowledge added by this study
    • Spot urine protein-to-creatinine ratio (uPCR) had a positive and significant correlation with 24-hour urine results in Chinese pre-eclamptic women when uPCR was <200 mg/mmol.
    • uPCR was not predictive of adverse pregnancy outcome in Chinese pre-eclamptic women.
    Implications for clinical practice or policy
    • The optimal threshold for diagnosis of proteinuria in the local Chinese population was similar to the 30 mg/mmol suggested by international guidelines.
    • When uPCR is <20 mg/mmol (significant proteinuria very unlikely) or >52 mg/mmol (significant proteinuria very likely), early clinical management can be facilitated without awaiting results of 24-hour urine protein.
    • When uPCR is ≥200 mg/mmol, 24-hour urine is needed for an accurate quantification as correlation between these two tests is low above this level.
     
     
    Introduction
    Pre-eclampsia, or de-novo proteinuric hypertension after 20 weeks of pregnancy,1 is a major cause of maternal and perinatal morbidity and mortality due to eclampsia, cerebrovascular events, preterm delivery, and fetal growth restriction. In industrialised countries, the incidence has been reported to be 3% to 5% of pregnancies.2 3 In a territory-wide study in China, hypertensive disorders complicated 5.2% of all pregnancies, with more than 50% of them being pre-eclampsia.4
     
    The gold standard for diagnosis of proteinuria is the presence of >300 mg of protein in a 24-hour urine sample.1 This test, however, is cumbersome and time-consuming for women, has cost implications, can cause a delay in diagnosis and hence management because of its turnaround time, and can lead to inaccurate results from incomplete collection or varying use of assays.
     
    International guidelines have endorsed spot urine protein-to-creatinine ratio (uPCR) of >30 mg protein/mmol creatinine as an alternative to a 24-hour urine sample to represent significant proteinuria.1 5 6 Meta-analyses in 2012 and 2013 revealed that maternal uPCR showed promising diagnostic value for significant proteinuria in suspected pre-eclampsia.7 8 The optimal threshold to detect significant proteinuria varied from 0.30 to 0.35, and considerable heterogeneity existed in the diagnostic accuracy at most thresholds across studies.7 Moreover, there were few studies of the diagnostic value of uPCR in a Chinese population. Since Chinese women generally have a lower muscle mass than their western counterparts, the former may have a lower urinary creatinine excretion that may alter their uPCR level9 and consequent diagnostic accuracy of uPCR.
     
    While some studies10 11 12 have suggested that proteinuria is related to adverse pregnancy outcome, others have not.1 13 In the 2012 meta-analysis, there was insufficient evidence that uPCR could predict adverse pregnancy outcome.7 The latest guidelines on hypertension in pregnancy from the National Institute for Health and Care Excellence have recommended research to identify diagnostic thresholds of proteinuria that can accurately predict clinically important outcomes.5
     
    The aims of this study were to determine the accuracy of uPCR in predicting significant proteinuria in our local population, and adverse maternal or neonatal outcomes. If uPCR can accurately predict significant proteinuria and adverse pregnancy outcomes, it will be a quick, acceptable, and potentially cost-effective alternative to 24-hour urine for protein analysis. The clinical management of suspected proteinuric hypertension in pregnancy can then be modified to facilitate an early diagnosis or exclusion of pre-eclampsia.
     
    Methods
    All Chinese pregnant women with a diagnosis of pre-eclampsia (new-onset proteinuric hypertension after 20 weeks of gestation) and who delivered at Queen Elizabeth Hospital in Hong Kong from January 2011 to December 2013 (36 months) were eligible for initial inclusion in this retrospective study. Hypertension was defined as blood pressure of ≥140/90 mm Hg. Significant proteinuria was defined as 24-hour urine total protein of ≥300 mg/day or uPCR of ≥30 mg/mmol (local laboratory reference) if the former was not available. Test of uPCR has been available for a long period and has been widely used in our department since January 2011. The diagnosis of proteinuria was mostly based on 24-hour urine testing rather than uPCR before January 2011. Women were excluded from the study if they had pre-existing renal disease, chronic hypertension, or co-existing urinary tract infection (defined by a positive mid-stream urine culture). The study was approved by the hospital research and ethics committee as a registered study (Ref.: KC/KE-15-0025), with the requirement of patient informed consent waived because of its retrospective nature.
     
    In this study, uPCR was collected as a random urine sample at any time of the day. It was collected in the presence of a positive urine dipstick for protein or in women who presented with hypertension (even dipstick negative) to confirm or exclude proteinuria. For 24-hour urine, women were provided with a bottle and instructions to collect all urine within a 24-hour period. All collections were sent to the laboratory within 1 day of completion. Urine total protein was measured using a turbidimetric method based on benzethonium chloride reaction. Urine creatinine was measured using a kinetic colorimetric assay based on the Jaffé method. Both tests were performed with a Roche/Hitachi cobas c501 analyser (cobas 6000 system; Roche Diagnostics GmbH, Mannheim, Germany). The imprecision (coefficient of variation) of the urine protein assay was 3.7% at 0.18 g/L and 1.9% at 0.54 g/L. The imprecision of the urine creatinine assay was 6.9% at 7.0 mmol/L and 2.2% at 20.8 mmol/L.
     
    For the primary outcome analysis, women who had both uPCR and adequate 24-hour urine results collected within 24 hours were identified. 24-Hour urine collection was often inaccurate (due to over- or under-collection), even though patients have been provided with a standard instruction. It has been reported that 13% to 54% of 24-hour urine collections were inaccurate, with 24.8% of patients having a difference of ≥25% in the results between collections, exceeding the analytical and biological variation.14 Completeness of a 24-hour urine collection was assessed by urinary creatinine excretion. The normal range for urinary creatinine excretion was 7 to 14 mmol/day in our laboratory as recommended by the vendor of the test. Considering a mean body weight of 70 kg during pregnancy and understanding that urinary creatinine excretion remains unchanged in pregnancy, this reference range was compatible with general nephrology references of 133 to 177 µmol/kg/day of lean body mass.15 The two urine tests should be collected within 1 day to avoid the effect of day-to-day variation on the amount of protein in urine.
     
    For the secondary outcome analysis, adverse maternal outcomes were represented by severe hypertension (blood pressure ≥160/110 mm Hg), raised liver enzyme (alanine aminotransferase or aspartate aminotransferase ≥70 IU/L), renal insufficiency (serum creatinine ≥80 µmol/L), thrombocytopenia (platelet count <100 x 109 /L), admission to intensive care unit (ICU), eclampsia, or maternal mortality. Adverse neonatal outcomes were represented by prematurity (delivery at <37 weeks’ gestation), low birth weight (<2500 g), small-for-gestational age based on local population data, low Apgar score (<7) at 1 minute and 5 minutes of birth, admission to the neonatal intensive care unit (NICU), stillbirth, or early neonatal death. Data for maternal and neonatal outcomes were obtained from the hospital’s Clinical Data Analysis and Reporting System and individual medical records. To minimise the effect of multiple pregnancy on the clinical outcome, only singleton pregnancies were included for secondary outcome analysis. If more than one sample of uPCR were collected during the pregnancy, the first uPCR at the onset of proteinuria was used to determine the association with adverse outcomes.
     
    Data were analysed using the Statistical Package for the Social Sciences (Windows version 22.0; SPSS Inc, Chicago [IL], US). For the primary outcome analysis, the relationship between uPCR and 24-hour urine was assessed by Pearson correlation coefficient after taking logarithm as the data distribution of these two parameters were not nominal. Sensitivity, specificity, and positive and negative predictive values of uPCR were calculated. The sensitivity and specificity of uPCR at different cut-offs were analysed by receiver operating characteristics (ROC) curve. For the secondary outcome analysis, Mann-Whitney U test was used to determine the difference in proteinuria level between cases with or without an adverse pregnancy outcome.
     
    Results
    Of 432 cases of pre-eclampsia identified during the 36-month study period, 175 (40.5%) had uPCR analysed after excluding cases without collection of uPCR before delivery or ordering because of individual clinician’s preference or because immediate delivery was expected. Of these 175 cases, 55 (31.4%) were excluded after review of medical records, including 28 non-Chinese patients, 24 cases with pre-existing hypertension or pre-existing renal disease, one woman with active urinary tract infection, one with missing information, and one who did not deliver at our hospital. Urine samples collected from the remaining 120 women, who ranged from 24 weeks to 41 weeks of gestation, were analysed. The general characteristics of the study population are shown in Table 1.
     

    Table 1. General characteristics of the study population (n=120)
     
    Spot urine protein-to-creatinine ratio and 24-hour urine protein
    Of these 120 cases, 98 pairs of urine samples were collected, of which 12 were inadequate and 20 were collected more than 1 day apart. The remaining 66 pairs with both uPCR and adequate 24-hour urine collection available within 1 day were used for the primary outcome analysis. The median body weight of these 66 women was 72.1 kg (range, 56.5-97.0 kg).
     
    The two tests were correlated with a Pearson correlation coefficient (r) of 0.914 (P<0.0001). From Figure 1, it is clear that a positive and linear correlation between uPCR and 24-hour urine protein was evident up to a uPCR of 200 mg/mmol. On subgroup analysis, the correlation coefficient was high (0.875) and significant (P<0.0001) for uPCR of <200 mg/mmol, but low (0.389) and non-significant (P=0.152) for uPCR of ≥200 mg/mmol.
     

    Figure 1. Individual 24-hour urine protein versus spot urine protein-to-creatinine ratio (uPCR) values (n=66)
     
    With the local laboratory reference of uPCR set at 30 mg/mmol, as suggested by international guidelines,1 5 6 the positive predictive value of significant proteinuria (defined by 24-hour urine total protein ≥300 mg/day) was 96%, sensitivity 96%, negative predictive value 87%, and specificity 87%. Two false-positive cases and two false-negative cases were found. For the two false-positive cases, the 24-hour urine results were 0.28 g/d and 0.26 g/d and corresponding uPCR results were 44 mg/mmol and 31 mg/mmol. Although these 24-hour urine results were negative, these women subsequently developed proteinuria and were confirmed to have pre-eclampsia. For the two false-negative cases, their 24-hour urine results were 0.31 g/d and 0.38 g/d and corresponding uPCR results were 26 mg/mmol and 21 mg/mmol.
     
    The area under ROC curve was 0.981 (95% confidence interval [CI], 0.954-1.000; Fig 2). The optimal threshold of uPCR for diagnosing proteinuria was 33 mg/mmol. This gave the same sensitivity but a slightly higher specificity when compared with the suggested threshold of 30 mg/mmol,1 although there was a large overlap of 95% CIs (Table 2). A lower cut-off of 20 mg/mmol rather than the local laboratory reference of 30 mg/mmol on the uPCR would give 100% sensitivity. A higher cut-off of 52 mg/mmol would have 100% specificity (Table 2).
     

    Figure 2. Receiver operator characteristics analysis (n=66)
    Diagonal segments are produced by ties
     

    Table 2. Comparison of accuracy of uPCR against 24-hour urine protein at different cut-offs (n=66)
     
    Spot urine protein-to-creatinine ratio and adverse pregnancy outcomes
    We excluded 25 multiple pregnancies for this secondary outcome analysis. Of the remaining 95 singleton pregnancies with pre-eclampsia, the median gestation age of onset of proteinuria was 35 weeks and 64% were preterm (<37 weeks) at the onset.
     
    For maternal outcome, 47% of women developed severe hypertension, 6% developed raised liver enzymes, 6% renal insufficiency, and 2% thrombocytopenia. Admission to the ICU was required by 16%. There was no case of eclampsia or maternal mortality. Substantial differences in uPCR were observed in cases with and without raised liver enzymes and thrombocytopenia, although the differences were not statistically significant due to the small number of cases (Table 3).
     

    Table 3. Proteinuria determined by uPCR in pre-eclamptic patients with and without adverse maternal complications (n=95)
     
    For the neonatal outcome of all singleton pregnancies, 60% were born with low birth weight, 21% with low Apgar score at 1 minute, 6% with low Apgar score at 5 minutes of birth, and 54% required admission to the NICU. There was no case of stillbirth or early neonatal death. On the other hand, uPCR was significantly greater in newborns who required admission to the NICU than in those who did not. Nonetheless, if only women with onset of proteinuria before 34 weeks were included, there was no difference in uPCR between newborns with and without neonatal complications (Table 4).
     

    Table 4. Proteinuria determined by uPCR in pre-eclamptic patients with and without adverse neonatal complications
     
    Discussion
    Consistent with previous studies,7 8 our present study has shown a positive and significant correlation of uPCR with 24-hour urine result. This correlation was low and insignificant if uPCR was ≥200 mg/mmol. This is similar to the finding of another study that reported a lower positive predictive value between 24-urine protein excretion and uPCR for the greater degree of proteinuria (>1 g/day).16
     
    In the present study, the optimal threshold of uPCR for diagnosing proteinuria was 33 mg/mmol. This gave a similar predictive value when compared with the suggested threshold of 30 mg/mmol (Table 2).1 The area under ROC curve in the present study was 0.981 and was comparable with the result of a meta-analysis that included 24 trials with 3186 participants in which the area under summary ROC curve was 0.90, with pooled sensitivities and specificities of 91% and 86.3%, respectively.8
     
    Using a cut-off of 20 and 52 mg/mmol had 100% sensitivity and 100% specificity, respectively (Table 2). Similar findings for the cut-off value were noted in a systematic review of seven studies with 1717 patients.17 Random uPCR determinations are helpful primarily when they are <150 mg/g (17 mg/mmol) as ≥300 mg proteinuria is unlikely to be below this threshold. Nonetheless, for uPCR >600 mg/g (67.8 mg/mmol), significant proteinuria could be established.
     
    In clinical practice, there are three scenarios. First, if uPCR is >52 mg/mmol (66% of cases in the present study), significant proteinuria will be highly likely and the positive predictive value of a composite adverse neonatal outcome will be high (78.7% in the present study). Second, if uPCR is <20 mg/mmol (13% in the present study), significant proteinuria will be very unlikely. In either scenario, an earlier clinical decision can be made without ordering or completion of 24-hour urine collection or awaiting results. 24-Hour urine collection can be omitted in the majority of cases, therefore shortening the time to diagnose or exclude pre-eclampsia. Third, if uPCR is 20 to 52 mg/mmol (21% in the present study), 24-hour urine results will be required to confirm or exclude significant proteinuria. Although 24-hour urinary protein of ≥300 mg/day is the gold standard for diagnosing abnormal proteinuria in pregnancy, this is more a time-honoured value than one with high scientific proof.1 Having said that, in cases of gestational hypertension with proteinuria of <300 mg/day, attention should still be warranted if the uPCR is >30 mg/mmol, particularly if it shows a rising trend.
     
    If uPCR is ≥200 mg/mmol, correlation with 24-hour urine analysis will be low. In such cases, proteinuria should be confirmed with 24-hour urine protein measurement. It is probable that nephrotic range proteinuria exists above this threshold, thus necessitating prophylaxis against thromboembolism.1
     
    It is controversial whether uPCR can predict clinical outcome. Some studies10 11 12 have suggested that proteinuria is related to adverse pregnancy outcomes, for example, severe hypertension, renal insufficiency, liver disease, preterm delivery, small-for-gestational age, and transfer to NICU. Nonetheless, the latest ISSHP (International Society for the Study of Hypertension in Pregnancy) guideline suggests that the degree of proteinuria provides very little additional risk stratification in cases of pre-eclampsia, and does not include it when defining the severity of the disease.1 The recent multicentre PIERS (Pre-eclampsia Integrated Estimate of Risk) study demonstrated that neither uPCR nor 24-hour urine protein output was predictive of adverse perinatal outcome and hence concluded that the amount of proteinuria should not be used in isolation for decision making in women with pre-eclampsia.13 In the present study that focused on Chinese pre-eclamptic women, uPCR was significantly greater in cases that required admission to the NICU. This difference was no longer evident if only cases with early-onset proteinuria were included in the analysis. This shows that the observed difference in uPCR was related to the management strategy of preterm delivery in cases with early-onset pre-eclampsia rather than to the severity of proteinuria itself.
     
    The study provides an insight into the accuracy of uPCR and its relationship with pregnancy outcomes in a local Chinese population. Nonetheless, the present study was small and retrospective. Only those with a valid spot urine sample were included in the study and women with severe pre-eclampsia who required immediate treatment and delivery were excluded. The results would therefore be affected by such selection bias. The precision of the ROC curve is limited by the small sample size. Further research by a prospective study with timed urine collection and larger sample size is suggested to validate the findings of the present study.
     
    Conclusions
    There was a positive and significant correlation of uPCR with 24-hour urine protein result in Chinese pre-eclamptic women when uPCR was <200 mg/mmol. Significant proteinuria can probably be excluded in the presence of uPCR of <20 mg/mmol, but it should be considered when uPCR >52 mg/mmol. Significant proteinuria should be confirmed by 24-hour urine collection when uPCR is 20 to 52 mg/mmol, and uPCR was not significant in predicting adverse pregnancy outcomes.
     
    Acknowledgements
    The authors would like to thank Dr CC Shek from the Department of Pathology of Queen Elizabeth Hospital for his valuable assistance for providing information on the laboratory tests. We would also like to thank Ms Janice Yung for her kind clerical assistance in the preparation of this manuscript.
     
    Declaration
    All authors have disclosed no conflicts of interest.
     
    References
    1. Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens 2014;4:97-104. Crossref
    2. Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 2011;25:391-403. Crossref
    3. Tan KH, Kwek K, Yeo GS. Epidemiology of pre-eclampsia and eclampsia at the KK Women’s and Children’s Hospital, Singapore. Singapore Med J 2006;47:48-53.
    4. Ye C, Ruan Y, Zou L, et al. The 2011 survey on hypertensive disorders of pregnancy (HDP) in China: prevalence, risk factors, complications, pregnancy and perinatal outcomes. PLoS One 2014;9:e100180. Crossref
    5. Hypertension in pregnancy: the management of hypertensive disorders during pregnancy. NICE Clinical Guidelines, No. 107. London: RCOG Press; 2010.
    6. Lowe SA, Bowyer L, Lust K, et al. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust NZJ Obstet Gynaecol 2015;55:e1-e29. Crossref
    7. Morris RK, Riley RD, Doug M, Deeks JJ, Kilby MD. Diagnostic accuracy of spot urinary protein and albumin to creatinine ratios for detection of significant proteinuria or adverse pregnancy outcome in patients with suspected pre-eclampsia: systematic review and meta-analysis. BMJ 2012;345:e4342. Crossref
    8. Sanchez-Ramos L, Gillen G, Zamora J, Stenyakina A, Kaunitz AM. The protein-to-creatinine ratio for the prediction of significant proteinuria in patients at risk for preeclampsia: a meta-analysis. Ann Clin Lab Sci 2013;43:211-20.
    9. James GD, Sealey JE, Alderman M, et al. A longitudinal study of urinary creatinine and creatinine clearance in normal subjects. Race, sex, and age differences. Am J Hypertens 1988;1:124-31. Crossref
    10. Chan P, Brown M, Simpson JM, Davis G. Proteinuria in pre-eclampsia: how much matters? BJOG 2005;112:280-5. Crossref
    11. Thornton CE, Makris A, Ogle RF, Tooher JM, Hennessy A. Role of proteinuria in defining pre-eclampsia: clinical outcomes for women and babies. Clin Exp Pharmacol Physiol 2010;37:466-70. Crossref
    12. Bouzari Z, Javadiankutenai M, Darzi A, Barat S. Does proteinuria in preeclampsia have enough value to predict pregnancy outcome? Clin Exp Obstet Gynecol 2014;41:163-8.
    13. Payne B, Magee LA, Côté AM, et al. PIERS proteinuria: relationship with adverse maternal and perinatal outcome. J Obstet Gynaecol Can 2011;33:588-97. Crossref
    14. Côté AM, Firoz T, Mattman A, Lam EM, von Dadelszen P, Magee LA. The 24-hour urine collection: gold standard or historical practice? Am J Obstet Gynecol 2008;199:625.e1-6. Crossref
    15. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 1992;38:1933-53.
    16. Demirci O, Kumru P, Arınkan A, et al. Spot protein/creatinine ratio in preeclampsia as an alternative for 24-hour urine protein. Balkan Med J 2015;32:51-5. Crossref
    17. Papanna R, Mann LK, Kouides RW, Glantz JC. Protein/creatinine ratio in preeclampsia: a systematic review. Obstet Gynecol 2008;112:135-44. Crossref

    Pages