The first pilot study of expanded newborn screening for inborn errors of metabolism and survey of related knowledge and opinions of health care professionals in Hong Kong

Hong Kong Med J 2018 Jun;24(3):226–37 | Epub 4 Jun 2018
DOI: 10.12809/hkmj176939
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
ORIGINAL ARTICLE
The first pilot study of expanded newborn screening for inborn errors of metabolism and survey of related knowledge and opinions of health care professionals in Hong Kong
Chloe M Mak, MD, FHKAM (Pathology)1; Eric CY Law, PhD, FHKAM (Pathology)2,3; Hencher HC Lee, MA, FRCPA1; WK Siu, PhD, FHKAM (Pathology)1; KM Chow, FRCOG, FHKAM (Obstetrics and Gynaecology)4; Sidney KC Au Yeung, FRCOG, FHKAM (Obstetrics and Gynaecology)5; Hextan YS Ngan, FRCOG, FHKAM (Obstetrics and Gynaecology)6; Niko KC Tse, FHKCPaed, FHKAM (Paediatrics)7; NS Kwong, FHKCPaed, FHKAM (Paediatrics)8; Godfrey CF Chan, FHKCPaed, FHKAM (Paediatrics)9; KW Lee, FRCOG, FHKAM (Obstetrics and Gynaecology)4; WP Chan, MB, ChB, FHKAM (Obstetrics and Gynaecology)4; SF Wong, FRCOG, FHKAM (Obstetrics and Gynaecology)5; Mary HY Tang, FRCOG, FHKAM (Obstetrics and Gynaecology)6; Anita SY Kan, MRCOG, FHKAM (Obstetrics and Gynaecology)6; Amelia PW Hui, FRCOG, FHKAM (Obstetrics and Gynaecology)6; PL So, FRCOG, FHKAM (Obstetrics and Gynaecology)5; CC Shek, FHKCPaed, FHKAM (Paediatrics)7; Robert SY Lee, FHKCPaed, FHKAM (Paediatrics)7; KY Wong, FHKCPaed, FHKAM (Paediatrics)9; Eric KC Yau, FHKCPaed, FHKAM (Paediatrics)7; KH Poon, MRCP(UK), FHKCPaed8; Sylvia Siu, MB, ChB, FHKAM (Paediatrics)8; Grace WK Poon, FHKCPaed, FHKAM (Paediatrics)9; Anne MK Kwok, FHKCPaed, FHKAM (Paediatrics)9; Judy WY Ng, BAppSc(Nurs), MSSc (Counselling)4; Vera CS Yim, FHKAN (HKCMW), MSC5; Grace GY Ma, BSN, MHSM (Health Services Management)6; CH Chu, MS10; TY Tong, MSc1; YK Chong, FHKCPath, FHKAM (Pathology)1; Sammy PL Chen, FRCPA, FHKAM (Pathology)1; CK Ching, FRCPA, FHKAM (Pathology)1; Angel OK Chan, MD, FHKAM (Pathology)3; Sidney Tam, FRCP, FHKAM (Pathology)4; Ruth LK Lau, MB, ChB, FHKAM (Pathology)11; WF Ng, MB, ChB, FHKAM (Pathology)11; KC Lee, MB, ChB, FHKAM (Pathology)1; Albert YW Chan, MD, FHKAM (Pathology)1; CW Lam, PhD, FHKAM (Pathology)2
1 Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Kwai Chung, Hong Kong
2 Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
3 Division of Clinical Biochemistry, Queen Mary Hospital, Pokfulam, Hong Kong
4 Department of Obstetrics and Gynaecology, Princess Margaret Hospital, Kwai Chung, Hong Kong
5 Department of Obstetrics and Gynaecology, Tuen Mun Hospital, Tuen Mun, Hong Kong
6 Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pokfulam, Hong Kong
7 Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Kwai Chung, Hong Kong
8 Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Tuen Mun, Hong Kong
9 Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Pokfulam, Hong Kong
10 Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
11 Department of Pathology, Yan Chai Hospital, Tsuen Wan, Hong Kong
 
Corresponding author: Dr CW Lam (ching-wanlam@pathology.hku.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Newborn screening is important for early diagnosis and effective treatment of inborn errors of metabolism (IEM). In response to a 2008 coroners’ report of a 14-year-old boy who died of an undiagnosed IEM, the OPathPaed service model was proposed. In the present study, we investigated the feasibility of the OPathPaed model for delivering expanded newborn screening in Hong Kong. In addition, health care professionals were surveyed on their knowledge and opinions of newborn screening for IEM.
 
Methods: The present prospective study involving three regional hospitals was conducted in phases, from 1 October 2012 to 31 August 2014. The 10 steps of the OPathPaed model were evaluated: parental education, consent, sampling, sample dispatch, dried blood spot preparation and testing, reporting, recall and counselling, confirmation test, treatment and monitoring, and cost-benefit analysis. A fully automated online extraction system for dried blood spot analysis was also evaluated. A questionnaire was distributed to 430 health care professionals by convenience sampling.
 
Results: In total, 2440 neonates were recruited for newborn screening; no true-positive cases were found. Completed questionnaires were received from 210 respondents. Health care professionals supported implementation of an expanded newborn screening for IEM. In addition, there is a substantial need of more education for health care professionals. The majority of respondents supported implementing the expanded newborn screening for IEM immediately or within 3 years.
 
Conclusion: The feasibility of OPathPaed model has been confirmed. It is significant and timely that when this pilot study was completed, a government-led initiative to study the feasibility of newborn screening for IEM in the public health care system on a larger scale was announced in the Hong Kong Special Administrative Region Chief Executive Policy Address of 2015.
 
 
New knowledge added by this study
  • The feasibility of the OPathPaed service model was evaluated in 2440 neonates. The main focus was on parental education, consent, sampling, sample dispatch, dried blood spot preparation and testing, reporting, recall, and counselling.
  • Of 210 health care professionals who responded to a survey, 73.6% were unaware of newborn screening for inborn errors of metabolism (IEM), 87.6% urged for more education, and 91.3% supported implementing expanded newborn screening for IEM immediately or within 3 years.
Implications for clinical practice or policy
  • The OPathPaed service model for implementing expanded newborn screening for IEM is feasible for local public hospital settings.
  • Health care professionals support implementation of newborn screening for IEM. In addition, there is a substantial need of more education.
 
 
Introduction
The expansion of newborn screening (NBS) for various genetic disorders with a focus on inborn errors of metabolism (IEM) has become a mandatory part of health care policy worldwide. Multiplex testing by tandem mass spectrometry has extended the scope of NBS far beyond the traditional ‘one test for one disease’ paradigm, requiring only a tiny blood sample, obtained by a simple heel prick.1 2 As a result, many inherited diseases are now screened for to allow early diagnosis and intervention and thereby prevent permanent damage or potential deaths.
 
Inborn errors of metabolism are a group of rare metabolic diseases with heterogeneous clinical presentations and genetic aetiologies. They are individually rare but collectively common. In 2011, Lee et al3 reported a 5-year retrospective review on the laboratory diagnosis of amino acid disorders, organic acidurias, and fatty acid beta-oxidation defects in three regional hospitals. The overall local incidence of classical IEM was 1 in 4122 live births.3 No phenylketonuria was identified through the screening of 18 000 newborns in the early 1970s.4 Hyperphenylalaninaemia was the second most common amino acid disorder reported by Lee et al,3 with an incidence of 1 in 29 542 live births. Another study by Hui et al5 reported the overall incidence of common IEM as 1 in 5400. According to the Hong Kong Paediatric Metabolic Registry, there were two cohorts, the first one with 20 years from 1982 to 2002 with 89 IEM patients and the second one with 14 years from 1996 to 2010 with 120 IEM patients. The estimated incidence of IEM was 1 in 7580 (unpublished data); however, as that was a voluntary case-finding study from several hospitals, the incidence was likely to be an underestimate. These figures are similar to those reported worldwide, such as 1 in 5800 in mainland China,6 1 in 5882 in Taiwan,7 and 1 in 4000 in America.8
 
In 2000, a mandatory NBS programme for hyperphenylalaninaemia, congenital hypothyroidism, and congenital deafness was implemented in mainland China.9 In 2006, the American College of Medical Genetics recommended 29 metabolic diseases (IEM) for which screening should be mandated.10 Since then, the scope of this recommendation has been expanding (Recommended Uniform Screening Panel, the Secretary of the Department of Health and Human Services11).12 In Hong Kong, population screening for congenital hypothyroidism and glucose-6-phosphate dehydrogenase (G6PD) deficiency using umbilical cord blood has been mandatory since March 1984 under the Neonatal Screening Unit of the Clinical Genetic Service, Department of Health. This programme has resulted in a significant reduction in related morbidities and mortalities.
 
In 2008, a coroner inquest was called to investigate the sudden death of a 14-year-old boy with a postmortem genetic diagnosis of glutaric acidaemia type II.13 The Coroners’ Report demanded that “The Department of Health, the Hospital Authority, the Faculty of Medicine of various universities and others concerned should carry out a feasibility study to see whether universal check may be carried out on all newborn babies for congenital metabolism defect.”14
 
To be effective, an expanded NBS programme needs to be coupled with improved general awareness of IEM and NBS. Educational support and training are required for frontline clinicians engaged in the diagnosis and care of patients with IEM.15 Several studies have shown that health care professionals do not have satisfactory awareness and knowledge of IEM.15 16 17 18 Therefore, a better understanding of the awareness of IEM among health care professionals in Hong Kong is needed.
 
We have conducted the first feasibility pilot study on the expanded NBS service model in a hospital setting in Hong Kong and the first survey on the knowledge and opinions on NBS for IEM among health care professionals in Hong Kong.
 
Methods
This prospective pilot study was conducted in phases from 1 October 2012 to 31 August 2014, involving three public hospitals and The University of Hong Kong (HKU), with over 40 collaborators from departments of pathology, paediatrics, and obstetrics. Phases 1 and 2 involved a single-site study conducted at Princess Margaret Hospital from 1 October 2012 to 31 October 2013 and then at Tuen Mun Hospital from 1 November 2013 to 31 March 2014. Phase 3 was university (HKU)-based and the recruitment was open to the public from 3 March 2014 to 31 August 2014. Phase 4 was a two-site study at the Tuen Mun Hospital and Queen Mary Hospital from 4 April 2014. Phase 5 was carried out at all three hospitals from 2 July 2014 until 31 August 2014. The OPathPaed model for expanded NBS was used for evaluation.19 The OPathPaed model includes 10 steps: parental education, consent, sampling, sample dispatch, dried blood spot (DBS) preparation and testing, reporting, recall and counselling, confirmation test, treatment and monitoring, and cost-benefit analysis (Fig 1).
 

Figure 1. OPathPaed service model for delivery of expanded NBS for IEM in Hong Kong
 
Pilot study to investigate the feasibility of the 10-step OPathPaed model
Step 1: Parental education
Educational talks were delivered by chemical pathologists during antenatal visits. With the help of the Save Babies Through Screening Foundation, we added Chinese subtitles to the video titled “Newborn Screening Saves Babies One Foot at a Time”. The video is available online (https://www.youtube.com/watch?v=dxFit_a601w). DVDs and a locally designed pamphlet with an email address and telephone number for enquiries were distributed to expectant mothers (Fig 2). In order to raise public awareness, several interviews with the media were arranged and reports were published in several newspapers20 21 22 and radio and television programmes.23 24
 

Figure 2. Chinese version of pilot study pamphlet on newborn screening for inborn errors of metabolism
 
Step 2: Obtaining consent
A consent form was designed for NBS for IEM (data not shown). Educational videos and pamphlets were used to inform the parents. Written informed consent was collected during a postnatal talk after the education session. The talk was conducted in group presentation for the mothers by chemical pathologists.
 
Step 3: Sampling
Paediatricians or pathologists organised training for phlebotomists on the heel prick technique, in compliance with the Clinical and Laboratory Standard Institute guidelines.25 An instruction sheet with photographs of valid and invalid DBS samples was provided as guidance for the phlebotomists (Fig 3). Samples were collected from neonates aged between 24 hours and 28 days.
 

Figure 3. Instruction guide with examples of valid and invalid dried blood spot samples
 
Step 4: Dried blood spot dispatching
Drying racks and special boxes designed for specimen transport before complete drying were delivered to the testing sites. Complete drying of blood spots was ensured for valid sample integrity. The blood spot cards were dried perpendicular to each other above and below the rack position to avoid contact contamination between blood spots of different patients.
 
Step 5: Dried blood spot preparation and testing
Two commercial DBS assay kits: (1) MassChrom Amino Acids and Acylcarnitines from Dried Blood/Non-derivatised (Chromsystems Instruments & Chemicals GmBH, Gräfelfing, Germany); and (2) NeoBase Non-derivatized MSMS kit (with succinylacetone assay; PerkinElmer, Waltham [MA], US) were validated for use in the study. In addition to a manual puncher and an autopuncher for DBS preparation, a fully automated online extraction system (DBS-MS 500; CAMAG, Muttenz, Switzerland) was also evaluated. The precision and local reference intervals of the commercial assay kits are listed in Table 1. Our laboratory has participated in the Newborn Screening Quality Assurance Programme organised by the US Centers for Disease Control and Prevention (CDC) since 2011. The disease panel included in the study is shown in Table 2.8 10 11
 

Table 1. Precision performance and local reference intervals for full-term babies for two commercial assay kits (NeoBase, MassChrom)
 

Table 2. Disease panel included in the study11
 
Step 6: Reporting
Chemical pathologists were responsible for reporting of positive results to the paediatricians. The CDC cut-off for clinical decision (https://wwwn.cdc.gov/NSQAP/Restricted/CDCCutOffs.aspx) and the Region 4 Stork Collaborative Project (https://www.clir-r4s.org/) data interpretation tools were applied during interpretation of the results.
 
Step 7: Recall and counselling
Newborn Screening ACT Sheets and Confirmatory Algorithms by the American College of Medical Genetics (https://www.ncbi.nlm.nih.gov/books/NBK55827/) were followed for patient recall. All abnormal results were examined by chemical pathologists. These chemical pathologists were also responsible for contacting the parents for post-test counselling and for arranging subsequent hospital referrals for care by paediatricians.
 
Step 8: Confirmation test
Confirmation of diagnosis was provided by regional laboratories through measurements of functional metabolites (mainly plasma amino acid levels, plasma acylcarnitine levels, and urine organic acid levels) and genetic diagnosis by DNA sequencing wherever appropriate.
 
Step 9: Treatment and monitoring
Admission logistics and treatment protocols for neonatal units with on-call rosters were established by hospital paediatricians. The same regional laboratories mentioned in Step 8 continued to provide biochemical diagnostic services.
 
Step 10: Cost-benefit analysis
A cost-benefit analysis has been conducted and published previously.26 Hyperphenylalaninaemia due to 6-pyruvoyl-tetrahydropterin synthase deficiency was used as an example to evaluate the costs and benefits of implementing an expanded NBS programme in Hong Kong. Assuming an annual birth rate of 50 000 and hyperphenylalaninaemia incidence of 1 in 29 542 live births, the annual medical costs and adjusted loss of workforce would be HK$20 773 207. The implementation and operational costs of an expanded NBS programme are expected to be HK$10 473 848 annually. Thus, implementing the expanded NBS programme is expected to result in an annual saving of HK$9 632 750.26
 
Survey of health care professionals’ knowledge and opinions of newborn screening for inborn errors of metabolism
A questionnaire was distributed by convenience sampling to 430 health care professionals who worked in hospitals and were not involved in the pilot study. These self-administered questionnaires were distributed to local health care professionals including medical doctors, nurses, and other allied health care professionals either in person with returning envelopes or via email to department heads for further distribution. The self-administered questionnaire in English was modified from a previously published questionnaire that was tested among parents.27 The self-administered questionnaire included 13 questions that covered the local practice of the existing NBS programme, as well as knowledge and opinions of an expanded NBS programme. No personal identifiers were included in the questionnaire and questions were mostly in a closed-ended format. Data analyses were performed using Excel 2000 (Microsoft Corp. Redmond [WA], US) and GraphPad QuickCalcs (http://graphpad.com/quickcalcs/ConfInterval1.cfm). Percentages for each question were calculated as the number of replies divided by the total number of respondents for that question. The questions and corresponding responses are shown in Table 3.
 

Table 3. Survey questions on knowledge and opinions of newborn screening for inborn errors of metabolism and responses from health care professionals in Hong Kong (n=210)
 
Results
Pilot study recruitment
By 31 August 2014, 2440 neonates had been recruited. The DBSs were collected from neonates aged 24 to 48 hours (n=2064, 84.6%), 3 to 5 days (n=331, 13.6%), 5 to 7 days (n=9, 0.4%), and 7 to 28 days (n=36, 1.5%). The participation rate was 86.6% on the days when blood samples were collected. There were no recorded DBS sampling or dispatch failures. The method validation and results of the DBS amino acids and acylcarnitine assays have been published elsewhere28; further details are available from the corresponding author on request. Overall, no true-positive cases were found in this pilot study, likely because of the limited sample size. Six (0.25%) false-positive cases were detected in 2440 neonates; of these, two had mild elevations in long-chain acylcarnitine levels, two had high tyrosine levels, one had a high citrulline level, and one had a low free carnitine level. Subsequent laboratory findings were all normal. No false-negative cases were reported from the IEM clinics of the involved hospitals within 2 years after project completion. However, patients who emigrated or received treatment at private institutions could not be followed up.
 
Health care professionals’ knowledge and opinions of newborn screening for inborn errors of metabolism
A total of 430 questionnaires were distributed and 210 (48.8%) completed responses were received. Results are shown in Table 3. Of the respondents, 50.0% were nurses and 32.9% were doctors. The doctors worked mainly in departments of paediatrics (47.8%), pathology (21.7%), and obstetrics (17.4%). Most (89.6%) respondents were aware of the existing NBS programme for hypothyroidism and G6PD deficiency; however, 47.5% did not know about IEM and 73.6% had not heard of expanded NBS for IEM. Most (87.6%) respondents agreed that more education on IEM and NBS is needed.
 
Discussion
This is the first prospective pilot study on NBS for IEM in Hong Kong, and it has successfully evaluated the feasibility of the OPathPaed model. This study is also the first to investigate the knowledge and opinions on NBS for IEM of local health care professionals.
 
To implement an expanded NBS programme for IEM successfully in Hong Kong, there are several important points that need to be addressed. First, awareness and knowledge of NBS for IEM among the general public and among health care professionals should be improved.27 Second, comprehensive data on the local disease spectrum and incidence should be made available; such data were not available until recently.3 5 Third, free flow of information and sharing of experiences among colleagues working in the acute care and public health sectors should be facilitated. Fourth, more emphasis should be given to regular updates on NBS health care policy, confirmatory investigation service support, and treatment protocols. Last, the use of umbilical cord blood samples in the existing programme is unsuitable for an expanded NBS programme for IEM because of unacceptably high false-negative rates.29 The metabolites associated with many amino acid disorders, organic acid disorders, and fatty acid oxidation disorders are not elevated in cord blood. In 2013, the hospital-based OPathPaed model was published for the implementation of an expanded NBS programme suitable for a local setting.19 The present study further confirms the feasibility of the OPathPaed model for use on a larger scale. The OPathPaed model integrates expert input from obstetricians, pathologists, and paediatricians. Because babies born in Hong Kong are normally delivered in hospitals, the OPathPaed model approach should be able to achieve full coverage.
 
The success of an expanded NBS programme for IEM would depend not only on the diagnostics but also on how well patients diagnosed with IEM could be managed. It is difficult to accumulate experience and the many metabolic diseases can easily cause confusion. In addition, sophisticated management requires individualised drug formulations, which may not be easily accessible or may involve off-label prescriptions. Overseas studies have identified significant knowledge gaps among clinicians involved in the follow-up care of newborns with IEM identified by NBS.15 16 17 18 Some were poorly prepared to follow up the initial diagnosis, provide appropriate counselling, or make appropriate clinical referrals.17 In our study, 73.6% of 210 health care professionals (who were not involved in the pilot study) were unaware of the expanded NBS programme, and 47.5% of respondents did not know what IEM were. The majority of respondents (87.6%) agreed that better education was needed and 91.3% supported expanding NBS for IEM immediately or within 3 years. According to a parental survey among 172 parents regarding NBS for IEM,27 over 89% had never heard of NBS for IEM or metabolic disorders. Although some IEM may be incurable, 97% of parents supported an expanded NBS programme and 82.8% of parents supported implementation of this expansion immediately or within 3 years.27
 
The present study also provides the first local evaluation of the fully automated DBS-MS 500 system. The DBS is directly eluted into the extraction chamber, with an online extraction system connecting with the tandem mass spectrometer. There is no need for DBS card punching. Together with the integrated optical card recognition and barcode reading module, this automation minimises the risk of sample misidentification during manual processing. The precision and accuracy demonstrated are comparable to those of conventional procedures. However, because the DBS-MS 500 system requires application of an internal standard solution before extraction, the financial cost per extraction would be higher than that for conventional methods. In addition, special DBS cards are required for the extraction chamber. Third-party DBS cards of a specific quality may not easily fit into the system. The throughput of up to 500 DBS cards per run is more than adequate for local needs, as there are about 50 000 live births annually in Hong Kong.
 
The limitations of the pilot study include small and non-representative sample size, a relatively short study period that may have been inadequate for follow-up to confirm true negatives, and the convenience sampling and low response rate of the health care professional survey.
 
Conclusion
The present pilot study investigated the feasibility of an expanded NBS for IEM in Hong Kong, and surveyed health care professionals for their knowledge and opinions on NBS for IEM. We successfully evaluated the OPathPaed model on a larger scale than has been attempted previously and demonstrated that health care professionals have a favourable opinion of implementing an expanded NBS programme in Hong Kong. It is timely that, as this pilot study was completed, the needs of parents and health care workers were addressed in the Hong Kong Special Administrative Region Chief Executive’s Policy Address of 2015, when a government-led initiative was announced to study the feasibility of NBS for IEM in the public health care system on a large scale.
 
Author contributions
All authors have made substantial contributions to the concept or design of this study; acquisition of data; analysis or interpretation of data; drafting of the article; and critical revision for important intellectual content.
 
Acknowledgement
We acknowledge all collaborators, doctors, nurses, medical technologists, phlebotomists, information technologists, and parents for their efforts and support. We thank the Save Babies Through Screening Foundation for allowing us to use their video for educational purpose. We thank CAMAG Germany for providing technical support during the evaluation of the DBS-MS 500. The CAMAG had no role in the study design, data collection, analysis, reporting, or manuscript preparation.
 
Funding/support
This work was funded by the SK Yee Medical Foundation. The funder had no role in study design, data collection, analysis, interpretation, or manuscript preparation.
 
Declaration
All authors have no conflicts of interest to disclose. All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity.
 
Ethical approval
Local ethical approval was obtained from each of the regional hospitals involved in this study.
 
References
1. Millington DS, Kodo N, Norwood DL, Roe CR. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 1990;13:321-4. Crossref
2. Carpenter KH, Wiley V. Application of tandem mass spectrometry to biochemical genetics and newborn screening. Clin Chim Acta 2002;322:1-10. Crossref
3. Lee HC, Mak CM, Lam CW, et al. Analysis of inborn errors of metabolism: disease spectrum for expanded newborn screening in Hong Kong. Chin Med J (Engl) 2011;124:983-9.
4. Davies DP. Hong Kong Reflections: Health, Illness and Disability in Hong Kong Children. Hong Kong: The Chinese University Press; 1995.
5. Hui J, Tang NL, Li CK, et al. Inherited metabolic diseases in the Southern Chinese population: spectrum of diseases and estimated incidence from recurrent mutations. Pathology 2014;46:375-82. Crossref
6. Gu X, Wang Z, Ye J, Han L, Qiu W. Newborn screening in China: phenylketonuria, congenital hypothyroidism and expanded screening. Ann Acad Med Singapore 2008;37(12 Suppl):107-10.
7. Niu DM, Chien YH, Chiang CC, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis 2010;33(Suppl 2):S295-305. Crossref
8. Chace DH, Kalas TA, Naylor EW. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genomics Hum Genet 2002;3:17-45. Crossref
9. Zheng S, Song M, Wu L, et al. China: public health genomics. Public Health Genomics 2010;13:269-75. Crossref
10. American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: toward a uniform screening panel and system—executive summary. Pediatrics 2006;117(5 Pt 2):S296-307. Crossref
11. Recommended Uniform Screening Panel, The Advisory Committee on Heritable Disorders in Newborns and Children, US Department of Health and Human Services. Available from: https://www.hrsa.gov/advisorycommittees/mchbadvisory/heritabledisorders/recommendedpanel/. Accessed 1 Aug 2017.
12. Therrell BL, Johnson A, Williams D. Status of newborn screening programs in the United States. Pediatrics 2006;117(5 Pt 2):S212-52. Crossref
13. Lee HC, Lai CK, Siu TS, et al. Role of postmortem genetic testing demonstrated in a case of glutaric aciduria type II. Diagn Mol Pathol 2010;19:184-6. Crossref
14. Coroners’ Report 2008. Available from: http://www.judiciary.hk/en/publications/coroner_report_july08.pdf. Accessed 1 Aug 2017.
15. Gennaccaro M, Waisbren SE, Marsden D. The knowledge gap in expanded newborn screening: survey results from paediatricians in Massachusetts. J Inherit Metab Dis 2005;28:819-24. Crossref
16. Wells AS, Northrup H, Crandell SS, et al. Expanded newborn screening in Texas: a survey and educational module addressing the knowledge of pediatric residents. Genet Med 2009;11:163-8. Crossref
17. Kemper AR, Uren RL, Moseley KL, Clark SJ. Primary care physicians’ attitudes regarding follow-up care for children with positive newborn screening results. Pediatrics 2006;118:1836-41. Crossref
18. Dunn L, Gordon K, Sein J, Ross K. Universal newborn screening: knowledge, attitudes, and satisfaction among public health professionals. South Med J 2012;105:218-22. Crossref
19. Mak CM, Lam C, Siu W, et al. OPathPaed service model for expanded newborn screening in Hong Kong SAR, China. Br J Biomed Sci 2013;70:84-8. Crossref
20. 一滴血驗出罕見遺傳病. Oriental Daily 2010 Sep 12. Available from: http://orientaldaily.on.cc/cnt/news/20100912/00176_002.html. Accessed 1 Aug 2017.
21. 二代新生嬰兒篩檢代謝疾病. am730 2013 May 6. Available from: http://archive.am730.com.hk/column-153216. Accessed 1 Aug 2017.
22. 篩查防智障代謝病, 社會可年省近千萬. Ming Pao 2014 Jun 9. Available from: https://news.mingpao.com/pns/篩查防智障代謝病%20社會可年省近千萬/web_tc/article/20140609/s00002/1402257010439. Accessed 1 Aug 2017.
23. 精靈一點 (RTHK radio programme, 2014 Apr 15). Available from: http://programme.rthk.hk/channel/radio/programme.php?name=radio1/adwiser&d=2014-04-15&p=1147&e=259149&m=episode. Accessed 1 Aug 2017.
24. 星期二檔案:這幾滴血 (TVB programme, 2014 Feb 25). Available from: http://programme.tvb.com/news/tuesdayreport/episode/20140225/#page-1. Accessed 1 Aug 2017.
25. NBS01-A6, Blood Collection on Filter Paper for Newborn Screening Programs; Approved Standard—Sixth Edition. Available from: https://clsi.org/standards/products/newborn-screening/documents/nbs01/. Accessed 1 Aug 2017.
26. Lee HH, Mak CM, Poon GW, Wong KY, Lam CW. Cost-benefit analysis of hyperphenylalaninemia due to 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency: for consideration of expanded newborn screening in Hong Kong. J Med Screen 2014;21:61-70. Crossref
27. Mak CM, Lam CW, Law CY, et al. Parental attitudes on expanded newborn screening in Hong Kong. Public Health 2012;126:954-9. Crossref
28. Mak M. Chemical pathology analysis of inborn errors of metabolism for expanded newborn screening in Hong Kong [thesis]. The University of Hong Kong; 2012. Available from: http://hub.hku.hk/handle/10722/180075. Accessed 1 Aug 2017.
29. Walter JH, Patterson A, Till J, Besley GT, Fleming G, Henderson MJ. Bloodspot acylcarnitine and amino acid analysis in cord blood samples: efficacy and reference data from a large cohort study. J Inherit Metab Dis 2009;32:95-101. Crossref

Three-dimensional versus two-dimensional laparoscopy for ovarian cystectomy: a prospective randomised study

Hong Kong Med J 2018 Jun;24(3):245–51 | Epub 31 May 2018
DOI: 10.12809/hkmj176846
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
ORIGINAL ARTICLE
Three-dimensional versus two-dimensional laparoscopy for ovarian cystectomy: a prospective randomised study
MW Lui, MB, BS, MRCOG; Vincent YT Cheung, MB, BS, FRCOG
Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
 
Corresponding author: Dr MW Lui (luimanwa@gmail.com)
 
 Full paper in PDF
 
Abstract
Introduction: Three-dimensional (3D) laparoscopy is now available as an alternative to conventional two-dimensional (2D) laparoscopy for ovarian cystectomy. However, the clinical value of 3D laparoscopy in benign gynaecological surgery remains uncertain. This study evaluated whether 3D laparoscopy had any advantages over 2D laparoscopy for ovarian cystectomy for apparently benign ovarian cysts.
 
Methods: This prospective randomised study involved patients undergoing laparoscopic ovarian cystectomy. The primary outcomes were the duration of cystectomy and surgeon’s Global Operative Assessment of Laparoscopic Skills (GOALS) score. The secondary outcomes were the preferences, perceptions, and adverse effects reported by the participating surgeons.
 
Results: There were 38 patients assigned to the 2D laparoscopy group and 37 patients assigned to the 3D laparoscopy group. Participating surgeons in the 2D group reported more efficient tissue handling than did those in the 3D group (mean [standard deviation] rating score, 4.2 [0.8] vs 3.8 [0.8]; P=0.033). Duration of cystectomy (47.6 [32.0] min vs 51.6 [36.2] min; P=0.198) and overall GOALS score (20.8 [3.9] vs 20.1 [3.3]; P=0.393) were similar between both groups. Participating surgeons in the 2D group reported nausea, dizziness, ocular fatigue, and blurring of vision less frequently than did those in the 3D group (5.3% vs 45.9%; P<0.001).
 
Conclusion: There were no significant benefits to using 3D laparoscopy compared with conventional 2D laparoscopy for ovarian cystectomy, and 3D laparoscopy may cause more frequent adverse effects in surgeons.
 
 
New knowledge added by this study
  • For ovarian cystectomy, there is no significant benefit to using three-dimensional laparoscopy rather than conventional two-dimensional laparoscopy.
  • Three-dimensional laparoscopy permits binocular vision and depth perception; however, surgeons using three-dimensional laparoscopy more frequently reported adverse effects such as ocular fatigue, nausea, dizziness, and blurring of vision.
Implications for clinical practice or policy
  • Clinical use of three-dimensional laparoscopy in more complex surgical procedures, such as laparoscopic suturing, or with more experienced surgeons may be beneficial; therefore, further investigation is worthwhile.
 
 
Introduction
Laparoscopy has replaced laparotomy in most gynaecological procedures, and laparoscopic cystectomy is currently the mainstay of treatment for apparently benign ovarian cysts. However, the absence of depth perception and limited instrument dexterity are major drawbacks of laparoscopy. Advances in three-dimensional (3D) video imaging technology allow 3D laparoscopy to provide better precision than conventional two-dimensional (2D) laparoscopy, especially in depth perception and spatial orientation. This increased precision may help improve surgeon’s performance during laparoscopic surgery.
 
Studies have shown that 3D laparoscopy objectively1 2 and subjectively3 4 improves surgical performance, especially during complex tasks.5 In addition, 3D laparoscopy lessens the learning curve for beginners.6 The durations of laparoscopic cholecystectomy and pelvic lymphadenectomy have also been shortened when performed using 3D technologies.7 8 However, the clinical value of 3D laparoscopy in benign gynaecological surgery remains uncertain. This study aimed to evaluate any advantages of using 3D laparoscopy over 2D laparoscopy for ovarian cystectomy.
 
Methods
This prospective randomised study was conducted from May 2014 to May 2016 at the Queen Mary Hospital, Hong Kong, a teaching hospital affiliated with The University of Hong Kong. Women with apparently benign ovarian cysts who were scheduled for elective laparoscopic ovarian cystectomy and who were eligible for the study were invited at the pre-admission clinic to enrol in the study. Inclusion criteria were being older than 18 years; ability to understand Cantonese, Putonghua, or English; and ability to understand the study information during the consent process. Patients who were intra-operatively found to have no ovarian cyst were excluded from further analysis.
 
Patients were allocated by block randomisation to undergo surgery with 2D laparoscopy (2D group) or 3D laparoscopy (3D group) according to a computer-generated random sequence, in blocks of five. The group allocation for each patient was disclosed to the surgeon on the day before the surgery using a consecutively numbered, opaque, sealed envelope. Demographic data of patients and duration of surgeries were collected by a research nurse.
 
A pneumoperitoneum was created using a Veress needle to provide visually guided closed access. For 3D laparoscopy, a 10-mm 3D telescopic videoscope was used (Endoeye Flex 3D; Olympus, Center Valley [PA], US). All surgeons were trained for 3D laparoscopy using a pelvic trainer with standardised tasks including peg transfer, precision cutting, duct cannulation, and suturing with knot tying. The 3D laparoscopy training was continued until the surgeons could confidently operate using 3D images. All non-specialist surgeons were supervised by a laparoscopist accredited at the advanced level in gynaecological laparoscopic surgery, according to the Hong Kong College of Obstetricians and Gynaecologists.9 At their discretion, surgeons were allowed to switch from 3D laparoscopy to traditional 2D laparoscopy if difficulty was encountered during surgery. All 2D laparoscopies were performed using a 10-mm laparoscope (26033AP; Karl Storz Endoscopy-America Inc, Culver City [CA], US). The same 32-inch high-definition monitor (LMD-3215MT; Sony Corporation, Tokyo, Japan) was used for all operations. In the 2D and 3D groups, cystectomy was performed in the usual manner, using two or three 5-mm accessory ports inserted in the lower abdomen under direct vision. The start time of the operation (first skin incision), insertion of primary trocar, completion of cystectomy, and end of operation (final skin closure) were recorded by the research nurse.
 
After the operation, all surgeons were required to self-evaluate their performance by using the Global Operative Assessment of Laparoscopic Skills (GOALS) assessment tool.10 The five-item GOALS score includes assessment of depth perception, bimanual dexterity, efficiency, tissue handling, and autonomy. Any operator discomfort encountered during the surgery, any need to convert to 2D laparoscopy, and the surgeon’s preference for the type of laparoscopy based on experience were also recorded. Demographic data and operative findings, such as size and laterality of cysts, operative duration, and presence of adhesions were analysed. Duration of cystectomy was defined as the time from completion of primary port insertion to separation of the cyst from the ovary and completion of haemostasis. The time spent on specimen retrieval was not included, owing to variations in the specimen retrieval method with or without use of a specimen bag.
 
The primary outcome of the present study was the difference between the GOALS score of 2D and 3D groups. The secondary outcomes were the duration of cystectomy and surgeon’s preferences and reported adverse effects. Subgroup analysis was performed to compare the outcomes for different experience levels among the surgeons. The surgeons were categorised according to their experience in performing laparoscopic surgery (≤5 years or >5 years). Surgeons with more than 5 years of experience had achieved competency in gynaecological laparoscopic surgery to at least an intermediate level, according to the Hong Kong College of Obstetricians and Gynaecologists, and had completed a required number of laparoscopic operations as requested by the College.9
 
A sample size of 36 patients was required in each group, as calculated using an alpha of 0.05 and a beta of 0.2 for detection of a difference in the sum of four items of the GOALS score (excluding tissue handling) of 13 (interquartile range [IQR], 11-16) in the 2D group and 16 (IQR, 12-18) in the 3D group, as based on a previous study,11 using a two-sided test. To allow for a 10% dropout rate, 40 patients were recruited into each group. For randomised patients whose operations were subsequently rescheduled outside the study period, treatment assignment numbers were reallocated to subsequent eligible patients who provided consent. Statistical analysis was performed using SPSS Windows version 21.0 (IBM Corp, Armonk [NY], US). Data were presented as proportions or mean and standard deviation. Student’s t test and Chi squared test were used for statistical analyses. A P value of <0.05 was considered statistically significant.
 
Results
Of the 83 patients recruited into the study from May 2014 to May 2016, operations were rescheduled for three patients who were therefore withdrawn from the study; 80 patients completed the trial (Fig). Of these 80 patients, two from the 2D group and three from the 3D group were excluded from analysis because no cysts were identified. Finally, 38 patients in the 2D group and 37 patients in the 3D group were included for analysis. Patient characteristics and surgical outcomes are presented in Table 1. There were no significant differences between the 2D and 3D groups in terms of patient age, laterality of the ovarian cyst, histological diagnosis of the cyst, presence of severe adhesions, volume of blood loss, and experience level of the surgeon. Three accessory ports were used in four patients in the 2D group and in five patients in the 3D group. In all other patients, two accessory ports were used. The mean (standard deviation) diameter of the ovarian cyst was smaller in the 3D group than that in the 2D group (5.1 [2.1] cm vs 6.1 cm [2.1] cm; P=0.031). Body mass index in the 2D group was significantly higher than that in the 3D group (23.4 [4.4] kg/m2 vs 21.3 [2.6] kg/m2; P=0.011). Severe adhesion was defined as a score of >20 for adnexal adhesion unilaterally12 or a score of >40 for endometriosis,13 according to the American Society for Reproductive Medicine classifications.
 

Figure. Recruitment flowchart in this study
 

Table 1. Patient characteristics and surgical outcomes
 
The differences between 2D and 3D groups in terms of GOALS score and duration of cystectomy are presented in Table 2. A total of 15 surgeons participated in the study and there were 13 in each group: 11 in both, while two for each were involved in 2D and 3D groups, respectively. Participating surgeons in the 2D group reported more efficient tissue handling than did those in the 3D group. Adverse effects, including nausea, dizziness, ocular fatigue, and blurring of vision were reported less frequently by participating surgeons in 2D group than those in 3D group (Table 3). However, none of the participating surgeons requested intra-operative conversion from 3D to 2D laparoscopy. At the end of surgery, more participating surgeons in the 3D group expressed a preference for 2D laparoscopy (43.3%) than for 3D laparoscopy (18.9%), whereas 37.8% had no preference. A subgroup analysis of participating surgeons in the two groups did not show statistically significant differences in terms of GOALS score (2D vs 3D; 28.9 [5.1] vs 28.2 [46.0]; P=0.585), tissue handling (4.2 [0.8] vs 3.9 [0.8]; P=0.060), and duration of cystectomy (93.7 [46.1] min vs 97.7 [52.2] min; P=0.737).
 

Table 2. Differences between the 2D and 3D laparoscopy groups in terms of surgeon’s GOALS score and duration of cystectomy
 

Table 3. Adverse effects reported by participating surgeons
 
Subgroup analyses according to the experience level of the surgeon and the presence of dense adhesions are shown in Tables 4 and 5, respectively. Two of the surgeons in the 3D group and three of the surgeons in the 2D laparoscopy are accredited at the advanced level in gynaecological laparoscopic surgery by the Hong Kong College of Obstetricians and Gynaecologists. Surgeons with more than 5 years of laparoscopic experience reported lower scores in tissue handling and efficiency when using 3D laparoscopy. There were no differences in terms of GOALS score and duration of cystectomy in the subgroup with dense adhesions.
 

Table 4. Comparison between the 2D and 3D groups in terms of surgeon’s GOALS score and duration of cystectomy according to the experience level of the surgeon
 

Table 5. Comparison between the 2D and 3D groups in terms of surgeon’s GOALS score and duration of cystectomy according to presence of severe adhesions
 
Discussion
Three-dimensional laparoscopy is gaining popularity in modern gynaecological surgery owing to improved depth perception and spatial orientation compared with 2D laparoscopy. Improved effectiveness using 3D laparoscopy has been shown extensively in training models, especially when performing complex tasks5 and in beginners.6 8 14 However, our study was unable to show an improvement in terms of GOALS score and duration of operation (Table 2) despite the 3D laparoscopy group having a smaller mean ovarian cyst diameter (Table 1). This finding contradicts a recent meta-analysis that 3D laparoscopy was associated with shortened surgical time and hospital study, less blood loss, and fewer perioperative complications.15
 
The addition of binocular vision and depth perception in 3D laparoscopy is associated with more frequent adverse effects such as ocular fatigue, nausea, and dizziness.16 In the present study, participating surgeons in the 3D group more frequently reported nausea, dizziness, ocular fatigue, and blurring of vision than did those in the 2D group. However, this result may be because the participating surgeons were unfamiliar with 3D images; with experience, this discomfort may be lessened. Maintaining stability of the telescope is of utmost importance during 3D laparoscopy; therefore, familiarity with 3D images is important for assistants to mitigate adverse effects. Furthermore, maintaining an appropriate distance between the screen and the surgeon also alleviates nausea and ocular fatigue.16
 
Previous studies have shown that 3D laparoscopy is beneficial for less experienced surgeons6 8 14 and for any surgeon performing complex tasks.5 However, in our subgroup analysis, we were unable to confirm any benefits of 3D laparoscopy in relation to the experience level of the surgeons. All participating surgeons were much more familiar with 2D laparoscopy and, thus, the difference between groups might simply reflect the surgeon’s assessment of what they are used to. This familiarity effect may explain the lower scores in tissue handling and efficiency with 3D laparoscopy attained by the more experienced surgeons.
 
The surgeon’s preference for 2D laparoscopy and the heterogeneity of the participating surgeons and patients make the subgroup analyses underpowered and represents a constitute limitation of the present study. The differences in mean diameter of the ovarian cysts and body mass index between the two groups also suggest ineffective randomisation. Other limitations include ineffective randomisation, withdrawal of patients after randomisation, and surgeon’s lack of experience with 3D laparoscopy. During data analysis, there were also no controls for possible confounding factors, such as experience of each surgeon with 3D laparoscopy or significant differences in patient characteristics between the groups.
 
In conclusion, the results show that there is no significant benefit to using 3D laparoscopy for ovarian cystectomy compared with conventional 2D laparoscopy. Moreover, 3D laparoscopy is associated with more frequent adverse effects for surgeons. However, it is possible that more complex procedures, such as those involving laparoscopic suturing and knot tying, might be easier to perform with 3D laparoscopy than with 2D laparoscopy. Therefore, further evaluation of the clinical performance of 3D laparoscopy in operations of different complexities and of surgeons with different experience levels are warranted.
 
Author contributions
All authors have made substantial contributions to the concept of this study; acquisition of data; analysis or interpretation of data; drafting of the article; and critical revision for important intellectual content.
 
Acknowledgement
We wish to thank Ms Wai-ki Choi for helping in patient recruitment and data collection.
 
Funding/support
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
 
Declaration
The authors have no conflicts of interest to disclose. All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity. The study was presented as oral presentation in the 25th Asian and Oceanic Congress of Obstetrics and Gynaecology, 16 June 2017, Hong Kong.
 
Ethical approval
Ethical approval was obtained from the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster. Written informed consent was obtained from all participating patients and surgeons. The study was registered with ClinicalTrials.gov (NCT02775344).
 
References
1. Storz P, Buess GF, Kunert W, Kirschniak A. 3D HD versus 2D HD: surgical task efficiency in standardised phantom tasks. Surg Endosc 2012;26:1454-60. Crossref
2. Lusch A, Bucur PL, Menhadji AD, et al. Evaluation of the impact of three-dimensional vision on laparoscopic performance. J Endourol 2014;28:261-6. Crossref
3. Tanagho YS, Andriole GL, Paradis AG, et al. 2D versus 3D visualization: impact on laparoscopic proficiency using the fundamentals of laparoscopic surgery skill set. J Laparoendosc Adv Surg Tech A 2012;22:865-70. Crossref
4. Sørensen SM, Savran MM, Konge L, Bjerrum F. Three-dimensional versus two-dimensional vision in laparoscopy: a systematic review. Surg Endosc 2016;30:11-23. Crossref
5. Wagner OJ, Hagen M, Kurmann A, Horgan S, Candinas D, Vorburger SA. Three-dimensional vision enhances task performance independently of the surgical method. Surg Endosc 2012;26:2961-8. Crossref
6. Cicione A, Autorino R, Breda A, et al. Three-dimensional vs standard laparoscopy: comparative assessment using a validated program for laparoscopic urologic skills. Urology 2013;82:1444-50. Crossref
7. Bilgen K, Ustun M, Karakahya M, et al. Comparison of 3D imaging and 2D imaging for performance time of laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech 2013;23:180-3. Crossref
8. Fanfani F, Rossitto C, Restaino S, et al. How technology can impact surgeon performance: a randomized trial comparing 3-dimensional versus 2-dimensional laparoscopy in gynecology oncology. J Minim Invasive Gynecol 2016;23:810-7. Crossref
9. Hong Kong College of Obstetricians and Gynaecologists. Endoscopic surgery: accreditation of gynaecological laparoscopic surgery. Available from: http://www.hkcog.org.hk/hkcog/pages_2_64.html. Accessed 4 Jun 2017.
10. Vassiliou MC, Feldman LS, Andrew CG, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 2005;190:107-13. Crossref
11. Ko JK, Li RH, Cheung VY. Two-dimensional versus three-dimensional laparoscopy: evaluation of physicians’ performance and preference using a pelvic trainer. J Minim Invasive Gynecol 2015;22:421-7. Crossref
12. Hulka JF, Omran K, Berger GS. Classification of adnexal adhesions: a proposal and evaluation of its prognostic value. Fertil Steril 1978;30:661-5. Crossref
13. Revised American Fertility Society classification of endometriosis: 1985. Fertil Steril 1985;43:351-2. Crossref
14. Alaraimi B, El Bakbak W, Sarker S, et al. A randomized prospective study comparing acquisition of laparoscopic skills in three-dimensional (3D) vs. two-dimensional (2D) laparoscopy. World J Surg 2014;38:2746-52. Crossref
15. Cheng J, Gao J, Shuai X, Wang G, Tao K. Two-dimensional versus three-dimensional laparoscopy in surgical efficacy: a systematic review and meta-analysis. Oncotarget 2016;7:70979-90. Crossref
16. Kunert W, Storz P, Kirschniak A. For 3D laparoscopy: a step toward advanced surgical navigation: how to get maximum benefit from 3D vision. Surg Endosc 2013;27:696-9. Crossref

Evaluation of a multiplex flow immunoassay versus conventional assays in detecting autoantibodies in systemic lupus erythematosus

Hong Kong Med J 2018 Jun;24(3):261–9 | Epub 25 May 2018
DOI: 10.12809/hkmj177007
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
ORIGINAL ARTICLE
Evaluation of a multiplex flow immunoassay versus conventional assays in detecting autoantibodies in systemic lupus erythematosus
Elaine YL Au, MB, BS, FHKAM (Pathology)1; WK Ip, PhD1; CS Lau, MB, ChB, FHKAM (Medicine)2, YT Chan, MB, BS, FHKAM (Pathology)1
1 Division of Clinical Immunology, Department of Pathology, Queen Mary Hospital, Pokfulam, Hong Kong
2 Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
 
Corresponding author: Dr Elaine YL Au (elaineauyl@gmail.com)
 
 Full paper in PDF
 
Abstract
Introduction: Conventional diagnostic assays are being replaced with automated multiplex assays, but their performance needs to be evaluated. We compared a multiplex flow immunoassay with conventional techniques in the detection of antinuclear antibodies (ANAs) and antibodies to specific extractable nuclear antigens (ENAs) in serum samples from patients with systemic lupus erythematosus.
 
Methods: A total of 140 consecutive Chinese patients with systemic lupus erythematosus and 41 healthy controls were included. The automated BioPlex 2200 ANA Screen assay (Bio-Rad Laboratories, Hercules [CA], US) was compared with indirect immunofluorescence. In addition, use of BioPlex 2200 to detect anti-ENA antibodies was compared with in-house assays of countercurrent immunoelectrophoresis (CIEP), enzyme-linked immunosorbent assay (ELISA), and line blot.
 
Results: The sensitivity and specificity of BioPlex in detecting ANAs (91.4% and 95.1%, respectively) were comparable to those of indirect immunofluorescence (90.7% and 85.4%, respectively). Overall, BioPlex achieved the best agreement with ELISA in detecting anti-ENA antibodies: agreement was >90% for most antibody types (κ=0.79-0.94). In contrast, agreement was poorest with CIEP, ranging from 85.6% (κ=0.33) for anti-Sm antibodies to 93.9% (κ=0.88) for anti-Ro antibodies. Overall, BioPlex and ELISA had the highest sensitivity, whereas CIEP had the highest specificity. In terms of disease association, anti-Sm detected by CIEP had the best positive predictive value and specificity for lupus nephritis.
 
Conclusions: In a local lupus cohort, BioPlex showed comparable sensitivity to indirect immunofluorescence in detecting ANAs and comparable performance to ELISA in detecting anti-ENA antibodies. However, CIEP was the best method in terms of disease specificity.
 
 
New knowledge added by this study
  • The sensitivity of the BioPlex 2200 ANA Screen was comparable to that of indirect immunofluorescence.
  • The BioPlex 2200 multiplex platform has a comparable performance to the enzyme-linked immunosorbent assay in the detection of antibodies to specific extractable nuclear antigens, but it is less specific than conventional gel precipitation (countercurrent immunoelectrophoresis).
Implications for clinical practice or policy
  • The performance of newer multiplex platforms for autoantibody detection may be different from that of conventional methods, and disease specificity of autoantibodies may change according to the test method.
  • This variation may have a significant impact on the interpretation of results and on patient management.
 
 
Introduction
Connective tissue disease is a group of disorders characterised by the presence of antinuclear antibodies (ANAs) and clinical autoimmune phenomena. The investigations that are performed depend on both purpose and performance characteristics. For example, to rule out a diagnosis, a test with high sensitivity is needed, such as testing for the absence of ANAs to rule out systemic lupus erythematosus (SLE). In contrast, to establish a diagnosis, a test with high specificity is more desirable, such as testing for antibodies to double-stranded DNA (dsDNA) or anti-Sm antigens in SLE. Therefore, after an initial positive ANA test result, subsequent tests for specific antibodies, such as those against dsDNA and certain extractable nuclear antigens (ENAs), are necessary.
 
Conventionally, ANAs are detected by indirect immunofluorescence (IIF). This method is sensitive and essentially detects all antibodies against cellular constituents, with antibody profile having varying clinical significance. However, it is labour-intensive, and technical interpretation of the results can be subjective. The enzyme-linked immunosorbent assay (ELISA), which can be automated and high-throughput–enabled, is gaining popularity over IIF. When ELISA is used to screen for ANAs, the source of antigens has major implications on the sensitivity and specificity of the assay. Although the ELISA technique has improved with time, concerns over false-negative ANA cases persist. Therefore, the American College of Rheumatology (ACR) still recommends IIF as the gold standard in ANA testing.1
 
To detect antibodies against ENAs, gel precipitation assays have been used for more than five decades, and countercurrent immunoelectrophoresis (CIEP) has been accepted as the reference method for anti-ENA antibody testing. Positive results from CIEP are highly specific. The majority of the literature on autoantibodies and disease association has been established with this technique.2 However, other methods such as ELISA, immunoblot, and line blot are gradually replacing CIEP. In recent years, multiplex assays have been introduced. The BioPlex 2200 ANA Screen assay (Bio-Rad Laboratories, Hercules [CA], US) is an automated multiplex immunoassay using flow cytometry to detect a panel of autoantibodies, including ANAs and antibodies against ENAs. There are a few published studies showing reasonable agreement between this system and ELISA.3 4 5 6 7
 
Conventional assays are being replaced with newer automated high-throughput assays. However, the performance of the newer techniques may not be equivalent to that of conventional assays. This difference will have important implications to clinicians, who may base their clinical judgement on their knowledge of how conventional assays perform.8 9 10 11 12 13 14 15 16 In this study, we evaluate the performance of BioPlex 2200 using serum samples from a local cohort of SLE patients, and compare it with the performance of three established techniques (CIEP, ELISA, line blot) in terms of anti-ENA antibody detection. The sensitivity of BioPlex 2200 ANA Screen assay was also compared with IIF.
 
Methods
Study setting and participant recruitment
This cross-sectional study was conducted at the Queen Mary Hospital, Hong Kong, a tertiary university teaching hospital. Patients were recruited from the hospital’s lupus clinic from 1 December 2013 to 31 December 2013. All patients attending the clinic underwent routine serology screening during their visit. Of 160 consecutive patients, 140 with adequate serum stored in the clinical immunology laboratory were recruited. All patients had an established diagnosis of SLE, according to the ACR classification criteria.17 Patients who were <18 years or >80 years and pregnant patients were excluded from the study. Data of serum samples in 41 healthy controls, who were mainly laboratory staff and had given verbal consent for the blood donation were also included; their age ranged from 18 to 54 years. All stocked serum was stored at -70°C.
 
Assessment of clinical variables
Electronic and written medical records of the recruited patients were reviewed, and relevant clinical and laboratory data were collected. Global disease activity was assessed according to the SLE disease activity index,18 19 and cumulative organ damage was assessed in terms of the Systemic Lupus International Collaborating Clinics/ACR Damage Index score.20
 
Antinuclear antibody detection
BioPlex 2200 automated system
The BioPlex 2200 ANA Screen system was used to detect 13 types of autoantibodies simultaneously in one test—namely, those against dsDNA, chromatin, centromere B, Scl-70, RNP (RNP-A, RNP-68), Sm, RNP/Sm, Ro (SSA-52, SSA-60), SSB/La, Jo-1, and ribosomal P protein. For BioPlex results, anti-RNP was reported separately from anti-RNP/Sm; the kit’s RNP antigen is a recombinant antigen (RNP-A and RNP-68) whereas RNP/Sm is an affinity-purified antigen, which is similar to the antigen used for the RNP test in ELISA and line blot in this study.
 
The presence of anti-dsDNA antibody was classified as negative if levels were ≤4 IU/mL, indeterminate if 5 to 9 IU/mL, and positive if ≥10 IU/mL, as recommended by the manufacturer. For the other autoantibodies, the results were expressed as an antibody index (AI). An AI of 1.0 was the cut-off concentration that corresponded to approximately the 99th percentile of values obtained from a nondiseased population in the manufacturer’s study. Results of ≥1.0 were reported as positive (range, 0.2-8.0 AI). A test result was considered positive for ANAs if one or more of the antibody tests in the panel was positive.
 
Indirect immunofluorescence
The IIF assay was adopted as the reference method for ANA detection. All serum samples were diluted in 1:80 in phosphate-buffered saline and tested on slides pretreated with substrate from a human epithelial cell line (Kallestad HEp-2 Cell Line Substrate Slides; Bio-Rad Laboratories, Hercules [CA], US) according to the manufacturer’s instructions. The slides were read using the same microscope and setting as routine clinical samples by a single observer. Slides that were negative for ANA by IIF were reviewed by an independent second observer to confirm negativity. In cases of discrepancy, a third adjudicator was sought.
 
Anti–extractable nuclear antigen antibody detection
The performance of BioPlex in the detection of anti-ENA antibodies was compared with that of the following assays.
 
Countercurrent immunoelectrophoresis
The CIEP assay used in this study was optimised in-house. Rabbit thymus extract (ImmunoVision Inc, United States) was used for typing of anti-Sm, anti-RNP, and anti-La, whereas human spleen extract (ImmunoVision Inc) was used as a source of Ro antigen.
 
Line blot
The EUROASSAY test kit (EUROIMMUN, Lübeck, Germany) was used as the line blot immunoassay in this study. The kit qualitatively assessed the presence of human immunoglobulin G (IgG) autoantibodies against six different antigens: RNP, Sm, SS-A, SS-B, SCl-70, and Jo-1. On the basis of signal intensity, the results were categorised as negative, borderline, and positive.
 
Enzyme-linked immunosorbent assay
The QUANTA Lite ENA Profile EIA kit (INOVA Diagnostics, San Diego [CA], US) was used for ELISA in this study. The kit qualitatively screened for the presence of IgG autoantibodies against specific ENAs—namely, SSA (60 and 52 kDa), SSB, Sm, RNP/Sm, Scl-70, and Jo-1. The results were calculated using the following formula (where OD = optical density at 450 nm):
 
 
Results of <8 U/mL were classified as negative, 8 to 12 U/mL as equivocal, and >12 U/mL as positive.
 
Statistical analysis
The diagnostic performance of BioPlex versus that of IIF was compared for the detection of ANAs in the SLE cohort and controls. Assay sensitivity and specificity were calculated and compared using a paired McNemar’s test. Cohen’s kappa coefficient and percentage of observed agreement were also calculated for the two methods.
 
For individual anti-ENA antibodies (against RNP, Sm, Ro, La, Scl-70, and Jo-1), agreement analysis was calculated for the four laboratory methods. Fleiss’ kappa coefficient with its 95% confidence interval and the percentage of observed agreement were calculated to assess overall agreement among the four methods. Pairwise agreement analysis for the four methods was also performed by calculating Cohen’s kappa coefficient and percentage of observed agreement. Weak and borderline results in the ELISA and line blots were treated as negative in the analysis.
 
The diagnostic value of anti-ENA antibody detection to predict various disease manifestations was examined, along with comparisons between the different methods. In particular, we studied diagnostic performance for the association of anti-Sm antibodies with nephritis, anti-RNP antibodies with Raynaud’s phenomenon, and anti-Ro/La antibodies with photosensitivity, discoid rash, Sicca symptoms, leukopenia, and lymphopenia.21 22 23 24 25 26 Sensitivity, specificity, positive and negative predictive values, and diagnostic accuracies were calculated.
 
The SPSS (Windows version 20.0; IBM Corp, Armonk [NY], US) and Microsoft Excel 2010 for Windows were used for statistical analysis and calculation of confidence intervals, respectively. P values of <0.05 were regarded as statistical significance. The STARD 2015 guidelines were used during the writing of this article.27
 
Results
Patients and autoantibodies
All 140 SLE patients were local Chinese patients, with a female predominance (n=128, 91.4%). The mean age was 46.8 (range, 24-69) years and the median disease duration was 17 years (Table 1). The majority of our cohort had at least one anti-ENA antibody present (n=114, 81.4%) as detected by the BioPlex method (Table 2). Anti-Ro antibody was the most commonly detected antibody, ranging from 50.7% to 62.9% of the cohort depending on the assay method (Table 2). Methods other than CIEP had a positivity rate of 1.4% to 5.0% for anti–Scl-70 antibody and 0.7% to 2.1% for anti–Jo-1 antibody.
 

Table 1. Baseline characteristics of participants
 

Table 2. Detection of anti-ENA antibodies for SLE patients and controls, by assay method
 
BioPlex antinuclear antibody screen versus indirect immunofluorescence
The sensitivity of the BioPlex 2200 ANA Screen assay in the SLE cohort was 91.4%, which was comparable to that of IIF (90.7%; Table 3). The specificity of BioPlex among healthy controls was high, reaching 95.1%, compared with 85.4% for IIF, although the difference was not statistically significant. The agreement between BioPlex and IIF was moderate (κ=0.657). Eight patients tested positive by IIF, but negative by BioPlex. The IIF patterns of these cases were either weak homogeneous or weak fine-speckled. Nine patients were negative by IIF, but positive by BioPlex; these included two with a low titre of anti-dsDNA antibodies, one with anti-Sm antibodies, one with anti-RNP antibodies, and five with anti-Ro antibodies. Four patients tested ANA-negative by both methods; all four had a long-standing history of SLE (12-40 years). All had had severe disease manifestations, including cerebral lupus and lupus nephritis, and all had been taking powerful immunosuppressants for years, although the disease had become stable and inactive in recent years. Interestingly, they had been ANA-positive in the past. Possible changes in their serology after a long period of heavy immunosuppression for disease control may have accounted for the observed results.
 

Table 3. Diagnostic accuracy of antinuclear antibody test by BioPlex versus indirect immunofluorescence as reference
 
Agreement between assays for antibodies to extractable nuclear antigens
In terms of agreement between different methods, BioPlex achieved the best agreement with ELISA, of >90% for the detection of most of the antibodies tested by ELISA (Table 4). The agreement between BioPlex and ELISA was 95.6% for anti-RNP/Sm antibodies (κ=0.89), 93.9% for anti-Sm (κ=0.79), 97.2% for anti-Ro (κ=0.94), and 95.6% for anti-La (κ=0.87). In contrast, the agreement between BioPlex and CIEP was not as strong. Agreement was 84.5% for detection of anti-RNP antibodies (κ=0.57), 85.6% for anti-Sm (κ=0.33), 93.9% for anti-Ro (κ=0.88), and 89.0% for anti-La (κ=0.6). Overall, the CIEP tended to agree better with the line blot assay than with ELISA or BioPlex.
 

Table 4. Agreement between four assay methods to detect anti-ENA antibodies
 
Performance of assays for antibodies to extractable nuclear antigens
Overall, BioPlex and ELISA had a higher sensitivity in detecting autoantibodies in the SLE cohort than the other two methods (Table 2). There were a few positive cases of anti–Scl-70 and anti–Jo-1 antibody detection in the cohort by all assays except CIEP, although the clinical significance of these antibodies in patients with SLE is uncertain.
 
In the healthy control group, CIEP had the highest specificity; none of the healthy subjects had anti-ENA autoantibodies when tested by CIEP (Table 2). With BioPlex, however, 2.4% (1/41) of the controls for each were positive for anti-La and anti–Scl-70 antibodies. For the line blot, if a weak borderline band were considered positive, then 4.9% (2/41) of the subjects were positive for anti-La antibodies (data not shown). If a weak borderline band were considered negative, then none of the healthy controls tested positive. For ELISA, if borderline results were counted negative then 2.4% (1/41) of the healthy controls still tested positive for anti-Sm antibodies.
 
Antibodies to extractable nuclear antigens and disease manifestations
Among the panel of anti-ENA autoantibodies tested, anti-Sm antibody had the best predictive value for the presence of lupus nephritis. However, the predictive value was method-dependent (Table 5). Anti-Sm antibody detection by CIEP had the best positive predictive value for lupus nephritis, reaching 87.5%. The specificity of anti-Sm antibody detection by CIEP for lupus nephritis was high, reaching 98.6%, although the sensitivity was only 10.4%. Anti-Sm antibody detection by BioPlex in nephritis had a higher sensitivity of 26.9%, however, the specificity and positive predictive value were lower than those achieved by CIEP (78.1% and 52.9%, respectively).
 

Table 5. Diagnostic performance of predicting clinical manifestations of SLE by detection of anti-ENA antibodies, according to assay method
 
Anti-RNP antibody detection by CIEP had a specificity of 84.1% for Raynaud’s phenomenon, whereas the specificity by other methods was lower (69.2% for ELISA, 78.5% for line blot, and 65.4% for BioPlex). As the prevalence of Raynaud’s phenomenon in the cohort was not high, the positive predictive value was at best 37.0% only, by CIEP.
 
BioPlex generally had a higher sensitivity than the other methods, with the trade-off of lower specificity. However, CIEP generally performed better than BioPlex in disease-antibody associations (Table 6). The superiority of CIEP over BioPlex was most obvious in the diagnostic accuracy of linking anti-RNP antibody detection to Raynaud’s phenomenon (71.4% for CIEP vs 62.9% for BioPlex; P<0.001). Detection of antibodies to RNP (recombinant) and RNP/Sm by BioPlex did not differ significantly in diagnostic accuracy for association with Raynaud’s phenomenon.
 

Table 6. Diagnostic accuracy of predicting clinical manifestations of SLE by detection of anti-ENA antibodies, according to assay method
 
Discussion
In recent years, the multiplex method has been introduced in ANA testing. However, on the basis of the existing literature, this method is considered suboptimal in sensitivity compared with IIF, and its false-negative rate is similar to that of ELISA, ranging from 0.2% to 41.5% in the different populations studied.4 7 28 29 30 When Tozzoli et al31 compared the detection of ANAs between IIF using a 1:80 cut-off and BioPlex 2200 ANA Screen in a cohort of 95 SLE patients, they found that IIF had superior sensitivity over BioPlex (85/95 [89.5%] positive vs 77/95 [81.1%] positive, respectively). Generally, multiplex methods are considered to be simple to operate, have potential for automated and high-throughput processing, and can detect multiple specific antibodies simultaneously. Nonetheless, the main limitation is that such methods do not detect all the autoantibodies that can be detected by IIF. Hence, multiplex systems are considered to be insufficient in sensitivity and negative predictive value, and IIF remains the reference method of ANA testing.32 33
 
For our cohort, the BioPlex system demonstrated good sensitivity (91.4%), comparable to that of IIF (90.7%), with an agreement of 86.2% (κ=0.657). The specificity of BioPlex was slightly higher than that of IIF (95.1% vs 85.4%) but the difference did not reach statistical significance, perhaps because of the relatively small control group. Notably, a large proportion (6 of 9 cases) of the BioPlex-positive IIF-negative cases were actually positive for anti-Ro antibodies. Although IIF is the preferred method for ANA screening, as recommended by the ACR and the European Autoimmunity Standardisation Initiative, inconsistency among IIF assays exists.33 Slides from different vendors vary in sensitivity, especially for anti-SSA/Ro antibody detection.34 Moreover, the reading and interpretation of slides are reader- and skill-dependent.
 
Overall, BioPlex as used in our study showed a higher performance when compared with other studies. This difference could be due to different cohort characteristics, disease activities, and ethnicities. For example, the vast majority of the literature reports on studies of Caucasian populations, and studies of Chinese populations are scarce. In addition, we recruited only patients with SLE, but not other autoimmune diseases, thereby precluding direct comparisons. We also had a relatively small number of SLE cases; hence, some ANA staining patterns (eg, nuclear dots, proliferating cell nuclear antigen, nuclear lamina) were not encountered in the cohort, which limits the evaluation. Given the available literature and international recommendations, IIF remains the preferred method for ANA test until more supportive data for BioPlex are available.
 
In our study, CIEP performed best in terms of specificity, with none of the healthy controls testing positive for anti-ENA antibodies. In contrast, the specificity of the other platforms, especially ELISA and BioPlex, was less optimal, and positivity for antibodies to Sm (ELISA), Scl-70 (BioPlex), and La (BioPlex) was recorded. In addition, anti–Scl-70 and anti–Jo-1 antibodies were detected in assays other than CIEP in the SLE group. If appropriate disease controls, such as vasculitis, rheumatoid arthritis, and chronic infections are included, the performance of these assays would be better characterised.
 
There were several important limitations in our study. First, this was a cross-sectional study, and the clinical features and manifestations were retrospectively reviewed. The reviewer of the medical records was not blinded to the results of assays, which may have led to potential bias in record review and data extraction. Second, the performance of BioPlex was not evaluated in other rheumatic or autoimmune disease groups, which limits the generalisability of the results in other settings. Third, the number of participants included, especially that of healthy controls, was relatively small; disease controls were not included; and the controls were not age- and sex- matched with cases. These limitations may have led to bias in the evaluation of anti-ENA antibody assays. Finally, autoantibodies may precede clinical manifestations for years. A prospective study with parallel assessment of cases referred to the laboratory for ANA and anti-ENA antibody assessment by different techniques, as well as follow-up of the clinical manifestations and diagnosis, may provide a better assessment of the BioPlex system.
 
Conclusions
The BioPlex 2200 ANA Screen demonstrated comparable sensitivity to IIF in a local SLE cohort. The detection of specific antibodies, including those against ENAs, by the BioPlex system was more sensitive than that by CIEP, although with less specificity. Overall performance of BioPlex resembled that of the conventional ELISA technique, but with higher speed and turnaround time. Hence, BioPlex can be considered as a high-throughput ELISA-like assay for the detection of anti-ENA antibodies in SLE.
 
Author contributions
All authors have made substantial contributions to the concept or design of this study; acquisition of data; analysis or interpretation of data; drafting of the article; and critical revision for important intellectual content.
 
Funding/support
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
 
Declaration
All authors have no conflicts of interest to disclose. All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity.
 
Ethical approval
This study was approved by The University of Hong Kong/Hospital Authority Hong Kong West Cluster Institutional Review Board (Ref No. UW14-442). The requirement for patient consent was waived by the ethics board.
 
References
1. Meroni PL, Schur PH. ANA screening: an old test with new recommendations. Ann Rheum Dis 2010;69:1420-2. Crossref
2. Clotet B, Guardia J, Pigrau C, et al. Incidence and clinical significance of anti-ENA antibodies in systemic lupus erythematosus. Estimation by counterimmunoelectrophoresis. Scand J Rheumatol 1984;13:15-20. Crossref
3. Hanly JG, Su L, Farewell V, Fritzler MJ. Comparison between multiplex assays for autoantibody detection in systemic lupus erythematosus. J Immunol Methods 2010;358:75-80. Crossref
4. Hanly JG, Thompson K, McCurdy G, Fougere L, Theriault C, Wilton K. Measurement of autoantibodies using multiplex methodology in patients with systemic lupus erythematosus. J Immunol Methods 2010;352:147-52. Crossref
5. Kim Y, Park Y, Lee EY, Kim HS. Comparison of automated multiplexed bead-based ANA screening assay with ELISA for detecting five common anti-extractable nuclear antigens and anti-dsDNA in systemic rheumatic diseases. Clin Chim Acta 2012;413:308-11. Crossref
6. Shovman O, Gilburd B, Barzilai O, et al. Evaluation of the BioPlex 2200 ANA screen: analysis of 510 healthy subjects: incidence of natural/predictive autoantibodies. Ann N Y Acad Sci 2005;1050:380-8. Crossref
7. Desplat-Jego S, Bardin N, Larida B, Sanmarco M. Evaluation of the BioPlex 2200 ANA screen for the detection of antinuclear antibodies and comparison with conventional methods. Ann N Y Acad Sci 2007;1109:245-55. Crossref
8. Orton SM, Peace-Brewer A, Schmitz JL, Freeman K, Miller WC, Folds JD. Practical evaluation of methods for detection and specificity of autoantibodies to extractable nuclear antigens. Clin Diagn Lab Immunol 2004;11:297-301. Crossref
9. Lock RJ, Unsworth DJ. Antibodies to extractable nuclear antigens. Has technological drift affected clinical interpretation? J Clin Pathol 2001;54:187-90. Crossref
10. Phan TG, Wong RC, Adelstein S. Autoantibodies to extractable nuclear antigens: making detection and interpretation more meaningful. Clin Diagn Lab Immunol 2002;9:1-7. Crossref
11. Kumar Y, Bhatia A, Minz RW. Antinuclear antibodies and their detection methods in diagnosis of connective tissue diseases: a journey revisited. Diagn Pathol 2009;4:1. Crossref
12. Emlen W, O’Neill L. Clinical significance of antinuclear antibodies: comparison of detection with immunofluorescence and enzyme-linked immunosorbent assays. Arthritis Rheum 1997;40:1612-8. Crossref
13. González C, Martin T, Arroyo T, García-Isidoro M, Navajo JA, González-Buitrago JM. Comparison and variation of different methodologies for the detection of autoantibodies to nuclear antigens (ANA). J Clin Lab Anal 1997;11:388-92. Crossref
14. Bruner BF, Guthridge JM, Lu R, et al. Comparison of autoantibody specificities between traditional and bead-based assays in a large, diverse collection of patients with systemic lupus erythematosus and family members. Arthritis Rheum 2012;64:3677-86. Crossref
15. Egner W. The use of laboratory tests in the diagnosis of SLE. J Clin Pathol 2000;53:424-32. Crossref
16. Wiik AS, Gordon TP, Kavanaugh AF, et al. Cutting edge diagnostics in rheumatology: the role of patients, clinicians, and laboratory scientists in optimizing the use of autoimmune serology. Arthritis Rheum 2004;51:291-8. Crossref
17. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982;25:1271-7. Crossref
18. Petri M, Hellmann D, Hochberg M. Validity and reliability of lupus activity measures in the routine clinic setting. J Rheumatol 1992;19:53-9.
19. Urowitz MB, Gladman DD. Measures of disease activity and damage in SLE. Baillieres Clin Rheumatol 1998;12:405-13. Crossref
20. Gladman D, Ginzler E, Goldsmith C, et al. The development and initial validation of the systemic lupus international collaborating clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 1996;39:363-9. Crossref
21. Tan EM, Fritzler MJ, McDougal JS, et al. Reference sera for antinuclear antibodies. I. Antibodies to native DNA, Sm, nuclear RNP, and SS-B/La. Arthritis Rheum 1982;25:1003-5. Crossref
22. Isenberg DA, Maddison PJ. Detection of antibodies to double stranded DNA and extractable nuclear antigen. J Clin Pathol 1987;40:1374-81. Crossref
23. McCain GA, Bell DA, Chodirker WB, Komar RR. Antibody to extractable nuclear antigen in the rheumatic diseases. J Reumatol 1978;5:399-406.
24. Hamburger M, Hodes S, Barland P. The incidence and clinical significance of antibodies to extractable nuclear antigens. Am J Med Sci 1977;273:21-8. Crossref
25. Clark G, Reichlin M, Tomasi TB Jr. Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythematosus. J Immunol 1969;102:117-22.
26. Tan EM, Kunkel HG. Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J Immunol 1966;96:464-71.
27. Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015;351:h5527. Crossref
28. Jaskowski TD, Schroder C, Martins TB, Mouritsen CL, Litwin CM, Hill HR. Screening for antinuclear antibodies by enzyme immunoassay. Am J Clin Pathol 1996;105:468-73. Crossref
29. Damoiseaux J, Vaessen M, Knapen Y, et al. Evaluation of the FIDIS vasculitis multiplex immunoassay for diagnosis and follow-up of ANCA-associated vasculitis and Goodpasture’s disease. Ann N Y Acad Sci 2007;1109:454-63. Crossref
30. Bonilla E, Francis L, Allam F, et al. Immunofluorescence microscopy is superior to fluorescent beads for detection of antinuclear antibody reactivity in systemic lupus erythematosus patients. Clin Immunol 2007;124:18-21. Crossref
31. Tozzoli R, Bonaguri C, Melegari A, Antico A, Bassetti D, Bizzaro N. Current state of diagnostic technologies in the autoimmunology laboratory. Clin Chem Lab Med 2013;51:129-38. Crossref
32. Op De Beéck K, Vermeersch P, Verschueren P, et al. Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosis. Autoimmun Rev 2012;12:137-43. Crossref
33. Agmon-Levin N, Damoiseaux J, Kallenberg C, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis 2014;73:17-23. Crossref
34. Copple SS, Giles SR, Jaskowski TD, Gardiner AE, Wilson AM, Hill HR. Screening for IgG antinuclear autoantibodies by HEp-2 indirect fluorescent antibody assays and the need for standardization. Am J Clin Pathol 2012;137:825-30. Crossref

Clinical and biochemical characteristics of infants with prolonged neonatal jaundice

Hong Kong Med J 2018 Jun;24(3):270–6 | Epub 25 May 2018
DOI: 10.12809/hkmj176990
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
ORIGINAL ARTICLE
Clinical and biochemical characteristics of infants with prolonged neonatal jaundice
Sylvia LY Siu, MB, ChB, FHKAM (Paediatrics)1; Lilian WM Chan, MB, BS, FHKAM (Paediatrics)2; Albert NS Kwong, MB, BS, FHKAM (Paediatrics)1
1 Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Tuen Mun, Hong Kong
2 Ha Kwai Chung Child Assessment Centre, Kwai Chung, Hong Kong
 
Corresponding author: Dr Sylvia LY Siu (siulys@ha.org.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Protocols for investigating neonatal prolonged jaundice vary and the yield from screening has not been assessed. International guidelines recommend establishing cholestasis before proceeding to investigate the underlying pathology. However, in most hospitals administered by the Hospital Authority, full liver function is checked at the first neonatal jaundice clinic visit. To study the diagnostic yield of this approach, we carried out a retrospective study of all infants referred for prolonged jaundice.
 
Methods: Attendance records from the neonatal jaundice clinic at the Tuen Mun Hospital, Hong Kong, the clinical management system, and electronic patient records were used to retrieve epidemiological, clinical, and laboratory data, and patients’ clinical progress.
 
Results: During the 8-month study period from 8 July 2015 to 8 March 2016, 1164 infants were referred to the neonatal jaundice clinic for prolonged jaundice. Among them, 16 (1.4%) had conjugated hyperbilirubinaemia. Diagnoses included biliary atresia (n=1), cytomegalovirus (CMV) infection (n=3), neonatal hepatitis syndrome (n=2), and transient cholestasis (n=10). In total, 98 (8.4%) infants had elevated alanine transaminase levels. Diagnoses included biliary atresia (n=1), hepatic congestion related to congestive heart failure (n=1), CMV infection (n=5), neonatal hepatitis syndrome (n=16), and non-specific elevated alanine transaminase (n=75). In total, 59 infants had elevated alkaline phosphatase levels.
 
Conclusions: A stepwise approach is recommended, in which full liver function is checked and the underlying cause of jaundice is investigated only after confirming cholestasis.
 
 
New knowledge added by this study
  • Among healthy infants with physiological or breastmilk jaundice, a transitional stage of cholestasis may occur when the jaundice is resolving. The lower conjugated bilirubin level and the downtrend of total bilirubin help to differentiate these infants from those with pathological cholestasis.
  • Breastfed infants usually have mild elevation of alanine transaminase which may reflect higher metabolism instead of pathology. Therefore, checking alanine transaminase levels at the first neonatal jaundice clinic visit is not recommended because of the potential detrimental effect on breastfeeding rates.
  • Late preterm infants with prolonged jaundice are at risk for osteopenia of prematurity.
Implications for clinical practice or policy
  • A stepwise approach is recommended, checking full liver function and investigating the underlying cause only after confirming cholestasis.
  • Bone profile blood test (alkaline phosphatase, albumin, calcium, and phosphate) is recommended for late preterm or low birth weight infants to screen for osteopenia of prematurity at the first neonatal jaundice clinic visit.
 
 
Introduction
All newborns have elevated unconjugated bilirubin concentrations relative to normal adult values. Two thirds or more of breastfed infants have unconjugated hyperbilirubinaemia that extends into the second and third weeks of life, and often up to age 8 to 12 weeks.1 Guidelines on the evaluation of cholestasis in infants recommend establishing cholestasis before proceeding to investigate the underlying pathology.2 3 However, of the hospitals administered by the Hong Kong Hospital Authority that care for newborns, most check full liver function at the first Neonatal Jaundice Clinic (NNJC) visit.
 
The Food and Health Bureau established the Committee on Promotion of Breastfeeding in Hong Kong in 2014. Since then, there has been a substantial improvement in exclusive breastfeeding rates and a continuous upward trend in ever-breastfeeding rates.4
 
The Tuen Mun Hospital is a regional hospital in the New Territories West region of Hong Kong. An outpatient Neonatal Jaundice Clinic is available every Monday to Friday from 14:00 to 17:00 to treat infants with jaundice. The increasing breastfeeding rates have led to increasing numbers of infants with prolonged jaundice being referred to the NNJC.
 
The present study aimed to learn about the clinical and biochemical characteristics of prolonged neonatal jaundice, and to study the diagnostic yield of a full liver function check at first NNJC visit. We reviewed the clinical and laboratory records of infants visiting the NNJC between 8 July 2015 and 8 March 2016. On the basis of the findings, we propose a more effective evaluation procedure for prolonged neonatal jaundice.
 
Methods
Attendance records maintained by the NNJC included the registration number, sex, and attendance date of the patients. Using the recorded patient registration numbers, gestational age, birth weight, glucose-6-phosphate dehydrogenase (G6PD) deficiency status, mode of feeding, phototherapy history, liver function test results, and clinical progress were retrieved from the clinical management system and electronic patient record. The study period was chosen for convenience. All infants who visited the NNJC during the study period were included to prevent possible selection bias. All suspicious data were verified by revisiting the electronic patient record to ensure data accuracy.
 
For gestational age, completed weeks of gestation were recorded. Preterm births were categorised as very preterm (before 34 weeks of gestation) or late preterm (between 34 weeks and 36 weeks 6 days of gestation). Full-term births were those at 37 weeks of gestation or later. Birth weights were categorised as very low (<1500 g), low (1500-2499 g), normal (2500-3999 g), or high (>3999 g). Modes of feeding were categorised as exclusive breastfeeding, mixed feeding, or exclusive formula feeding.
 
Data analysis
The SPSS for Windows version 15.0 (SPSS Inc, Chicago [IL], United States) was used for all statistical analyses. Student’s t test and univariate analysis of variance (ANOVA) were used in comparing the outcomes between groups. Tukey’s test was used for pairwise comparisons in ANOVA. Cross-tabulation was used to measure associations between binary outcome variables and binary predictor variables.
 
Results
Demographic characteristics
In total, 1164 infants (663 males, 501 females; male-to-female ratio=1.3:1) with prolonged jaundice were referred to the NNJC during the 8-month study period. The gestational ages of the infants ranged from 29 to 41 weeks, and there were eight (0.69%) very preterm infants and 94 (8.08%) late preterm infants. The birth weights of the infants ranged from 1425 g to 4670 g. The sample included only one (0.09%) very low birth weight infant, in addition to 80 (6.87%) low birth weight infants and 13 (1.12%) high birth weight infants. In total, 34 (5.13%) male infants and two (0.40%) female infants had G6PD deficiency. The mode of feeding was exclusive breastfeeding in 648 (55.70%) infants, mixed feeding in 400 (34.36%) infants, and exclusive formula feeding in 114 (9.79%) infants; the mode of feeding was not recorded in two infants. Among the 114 exclusively formula fed infants, 24 (21.10%) had a history of breastfeeding. At the first NNJC visit, 70 (6.01%) infants were 2 weeks old, 156 (13.40%) 3 weeks old, 758 (65.12%) 4 weeks old, 165 (14.18%) 5 weeks old, 10 (0.86%) 6 weeks old, and three (0.26%) 7 weeks old. One (0.09%) infant first visited at 8.7 weeks old and another (0.09%) first visited at 11.4 weeks old.
 
Full liver function test
At the first NNJC visit, 1139 (97.90%) infants received a full liver function test, which included taking measurements of alkaline phosphatase (ALP), calcium, and phosphate. In seven infants, low transcutaneous bilirubinometer readings were observed (peak reading, 42-86 μmol/L). Therefore, blood tests were not performed in these infants. At the first NNJC visit, 17 infants were seen by a doctor who adopted the stepwise approach and who screened only for cholestasis; one infant visiting on day 14 had only total bilirubin (TB) checked.
 
Influence of breastfeeding on liver biochemistry
There was a significant effect of mode of feeding on TB (F2,1155=18.058; P<0.01). The mean (M) TB levels in the exclusive breastfeeding group (M=146.73) were significantly higher than those in the mixed feeding group (M=131.05) and in the exclusive formula feeding group (M=121.21). Tukey’s test showed significant differences in TB levels between the exclusive breastfeeding and the mixed feeding groups (P<0.01) and between the exclusive breastfeeding and the exclusive formula feeding groups (P<0.01). There was no significant difference in TB level between the mixed feeding and exclusive formula feeding groups.
 
There was a significant effect of feeding on alanine transaminase (ALT) levels (F2,1133=15.015; P<0.01). The ALT levels in the exclusive breastfeeding group (M=21.79) were significantly higher than those in the mixed feeding group (M=18.97) and in the exclusive formula feeding group (M=16.55). Tukey’s test showed significant differences in ALT levels between the exclusive breastfeeding and the mixed feeding groups (P<0.01) and between the exclusive breastfeeding and the exclusive formula feeding groups (P<0.01). There was no significant difference in ALT levels between the mixed feeding and exclusive formula feeding groups.
 
There was a significant effect of feeding on ALP (F2,1135=6.276; P<0.01). The ALP levels in the exclusive breastfeeding group (M=348.83) were significantly higher than those in the mixed feeding group (M=329.08) and in the exclusive formula feeding group (M=327.76). Tukey’s test showed a significant difference in ALP level between the exclusive breastfeeding and the mixed feeding groups (P<0.01). There was no significant difference in ALP levels between the exclusive breastfeeding and the exclusive formula feeding groups (P=0.07) or between the mixed feeding and the exclusive formula feeding groups (P=0.99).
 
There was a significant effect for infants who had received phototherapy (t(1141)=3.57; P<0.01). Infants who had received phototherapy had higher TB levels (M=147.12) than those who had not (M=135.06).
 
There was no significant difference in TB levels between male and female infants. There was also no statistically significant difference in TB levels between G6PD-deficient and G6PD-sufficient infants.
 
Cholestasis
At the first NNJC visit, 16 (1.4%) infants had conjugated hyperbilirubinaemia. Diagnoses included biliary atresia in one, cytomegalovirus (CMV) infection in three, neonatal hepatitis syndrome in two, and transient cholestasis in 10 infants (Table 1). All infants were thriving well and did not have dark urine or pale stool at their first NNJC visit.
 

Table 1. Demographic and laboratory characteristics of cholestatic infants
 
Elevated alanine transaminase level
At the first NNJC visit, 98 (8.4%) infants had elevated ALT levels. The reference range used for ALT level is 5 U/L to 33 U/L. The proportion of infants that were followed up increased with increasing ALT level, as shown in Figure 1. Specific causes for elevated ALT level included biliary atresia in one infant, hepatic congestion related to congestive heart failure in one infant, and CMV in five infants (Table 2). Of the remaining 91 infants with elevated ALT levels, 16 had neonatal hepatitis syndrome and 75 had non-specific elevated ALT levels.
 

Figure 1. Infants with elevated ALT at the first visit
 

Table 2. Specific pathology of elevated alanine transaminase level
 
Urine tests revealed CMV infection in five infants with elevated ALT levels; CMV infection was believed to be acquired postnatally. These infants were all full-term births of normal birth weight and were asymptomatic. Of these five infants, four were exclusively breastfed and one was fed a mix of breastmilk and formula. After their elevated ALT levels resolved, three infants were discharged from the NNJC and the other two were followed up for coincidental findings (developmental concern in one and familial small head in the other) and not for concern over CMV infection. These five infants and the 75 infants with non-specific elevated ALT were all healthy and asymptomatic and had good weight gain; their elevated ALT levels resolved without treatment.
 
In this study, inflammation of the liver occurring in early infancy that could not be attributed to a specific cause of liver disease was termed neonatal hepatitis syndrome. The peak ALT levels and the duration of elevated ALT levels in 16 infants with neonatal hepatitis syndrome are shown in Figure 2. The duration of elevated ALT level ranged from 13 to 69 weeks and was shorter than 28 weeks in only four infants. Infants with neonatal hepatitis syndrome were followed up until ALT levels returned to normal and then for an average of 1 month longer.
 

Figure 2. Peak and duration of elevated ALT levels in 16 infants with neonatal hepatitis syndrome
 
In 75 infants who were otherwise healthy, non-specific elevated ALT levels were within double the usual upper limit. These infants were either not followed up or their liver function was monitored periodically (time intervals in months determined on case-by-case basis) with limited diagnostic testing.
 
Elevated alkaline phosphatase level and low phosphate level
The mode of feeding, gestational age, and birth weight were all found to affect ALP levels. Among 132 preterm or low birth weight infants, 21 (15.9%) had elevated ALP, compared with 31 (3.0%) among 1032 full-term and normal birth weight infants. For preterm or low birth weight infants versus term infants with birth weight >2499 g, the odds ratio for elevated ALP was 6.109 (95% confidence interval=3.394-10.994) [Table 3]. Among 1139 infants who underwent full liver function tests, 10 had low phosphate levels: seven had concomitant high ALP and low phosphate levels, and the remaining two late preterm infants and one full-term infant had isolated low phosphate levels.
 

Table 3. Infants with isolated elevated alkaline phosphatase and low phosphate
 
Discussion
We found that TB levels were significantly higher in the exclusive breastfeeding and mixed feeding groups than in the exclusive formula feeding group. Eight infants that were exposed to breastmilk and two exclusively formula-fed infants had transient cholestasis. Our findings also revealed that ALT levels were significantly higher in the exclusive breastfeeding and mixed feeding groups than in the exclusive formula feeding group. Besides, preterm or low birth weight infants had increased odds of high ALP levels compared with term infants with birth weight >2499 g.
 
Cholestasis
Breast milk jaundice (BMJ) was first described by Newman and Gross in 1963.5 Subsequently, BMJ has been reported to be associated with increased conjugated and unconjugated bilirubin levels.6 In 1991, investigators in Japan studied 58 breastfed infants with indirect hyperbilirubinaemia and found that 18 (31%) with BMJ had elevated ALP, gamma-glutamyltranspeptidase or serum bile acid, reflecting alterations in the hepatobiliary system.7 The serum bile acid levels in patients with BMJ are similar to those with cholestatic jaundice caused by diseases such as extrahepatic biliary atresia.7 This finding suggests that BMJ may be caused by hepatic dysfunction related to cholestasis. Moreover, for infants with BMJ and increased fasting serum bile acid levels, discontinuation of breastfeeding did not cause a rapid normalisation of the serum TB levels.7 This observation suggests that hyperbilirubinaemia in infants with increased serum bile acid levels is not directly related to breastfeeding. Our finding of transient cholestasis in 1.75% (2/114) of exclusive formula feeding infants versus 0.76% (8/1048) exclusive breast milk feeding and mixed feeding infants supported the hypothesis that cholestasis is not related to breastfeeding.
 
In this study, we used the term ‘transient cholestasis’ to describe the delay in the decline of conjugated bilirubin levels, as observed in 10 infants. Because TB levels declined first without a concomitant decline or even with an increase in conjugated bilirubin levels, there seemed to be a transitional stage of cholestasis. When TB levels decreased further, the conjugated bilirubin levels then decreased. Moreover, the conjugated bilirubin levels in these 10 infants were lower than those with biliary atresia or hepatitis. This finding supports the use of direct bilirubin as a surrogate marker in assessing the severity of cholestasis to ensure optimal timing of hepatobiliary scanning.8
 
Elevated alanine transaminase level
In 1981, Landaas et al9 first reported a significant difference in ALT levels between breastfed and formula-fed infants. They proposed a normal range for ALT level of 14 to 84 IU/L until 4.5 months of age. In 1984, Gómez et al10 examined 2099 out-patient children and found that ALT levels (40-97 IU/L, 3rd to 97th percentile) were higher in children <1 year than in older children. In 2003, investigators in Denmark found higher mean serum bilirubin, albumin, and aspartate transaminase (AST) levels in healthy exclusively breastfed full-term infants; they also found a strong positive association between AST and insulin-like growth factor-1 levels at 2 months (r=0.47; P=0.004).11 Protein levels in breast milk are lower than those in infant formulas. Serum albumin levels have been used to evaluate the adequacy of protein levels in infant formula. Thus, the finding of higher serum albumin levels in breastfed infants than formula feeding infants suggests that there were no protein deficiencies or abnormalities affecting albumin production in breastfed infants.11 Insulin-like growth factor-1 is an anabolic hormone in infants; thus, those authors believed that the most likely explanation for the elevated AST values among breastfed infants is a stimulation of liver metabolism through one of several growth factors in human milk.11 Therefore, the higher AST levels in breastfed infants were believed to be a reflection of a higher liver metabolism, rather than a reflection of liver cell damage. Alanine transaminase is present primarily in the liver and thus is a more specific marker of hepatocellular cell injury. Aspartate transaminase is present in the liver and other organs, a less specific marker of hepatocellular function. The aforementioned study used AST in a restrictive sense to reflect liver biochemistry. Therefore, the higher ALT levels among breastfed infants should logically be interpreted by the same token as reflection of higher liver metabolism rather than liver cell injury.
 
In the present study, other than those in which CMV was identified, findings were negative. Elevated ALT concentrations resolved in all infants other than the infant with biliary atresia. These findings support the hypothesis that elevated ALT in breastfed infants is a reflection of higher metabolism rather than of any pathology.
 
Isolated elevated alkaline phosphatase level and low phosphate level
Serum ALP is derived predominately from the liver and bones. In the present study, elevated ALP in seven infants was of hepatic origin. Tests of ALP’s heat stability index revealed that 52 infants with isolated ALP elevation were of bone origin.
 
In this study, 21 (15.9%) preterm or low birth weight infants had isolated elevated ALP (Table 3). Among the eight very preterm infants, only one had isolated elevated ALP and none had low phosphate. Among 94 late preterm infants, 20 (21.3%) had isolated elevated ALP and among these, six (30%) also had low phosphate.
 
The biochemical characteristics of high ALP and low phosphate are compatible with osteopenia of prematurity. During pregnancy, calcium and phosphorus are actively transferred from the mother to the fetus, reaching a peak accretion rate at 32 to 36 weeks of gestation. The third trimester is the period of most active growth and the increased accretion rate is in response to the higher fetal needs for the developing skeleton. As a result, in preterm infants, calcium and phosphate requirements increase with decreasing gestational age, to compensate for the loss of accretion of these minerals. In the present study, very preterm infants were managed in neonatal wards for long durations; therefore, this need for increased mineral supplements was recognised and addressed. However, late preterm infants may not be clearly distinguished from full-term infants, and their need for additional minerals may not be apparent or addressed during their short hospital stay.
 
Diagnostic yield of full liver function test at first neonatal jaundice clinic visit
Breastfed infants have been reported to acquire CMV via breastmilk.12 13 Cytomegalovirus excreted in breastmilk is likely caused by reactivated infection in the presence of maternal antibody transferred transplacentally.12 This type of milk-borne CMV infection apparently protects children from CMV diseases and the seropositivity for CMV may protect the next generation from CMV inclusion disease.
 
Poddighe et al14 reported a full-term breastfed infant with prolonged jaundice who had undergone extensive tests but with negative findings. Liver function test results returned to normal by age 7 months when breastmilk intake was significantly reduced. The authors14 then proposed that, in otherwise healthy infants and in the absence of risk factors, elevated ALT levels should be monitored for 7 months before performing further sophisticated tests. If this proposal were applied to the present study, only four infants had elevated ALT for less than 7 months and would have avoided further tests.
 
Proposed prolonged neonatal jaundice evaluation
The above discussion suggests that measuring ALT levels at the first NNJC visit is of limited benefit. For jaundiced infants, repeated follow-up examinations for elevated ALT levels may increase the risk of premature cessation of breastfeeding and of development of vulnerable child syndrome.15 Therefore, we propose measuring ALT levels only after noting cholestasis.
 
In the present study, late preterm infants were identified to be at high risk of having ALP elevation. Preterm or low birth weight infants accounted for <10% of those visiting the NNJC. In addition to cholestasis screening at the first NNJC visit, ALP, albumin, calcium, and phosphate should be checked for late preterm or low birth weight infants.
 
Vitamin D deficiency has been reported in 18% of Hong Kong women.16 In this study, the prevalence of elevated ALP was 4.6%. The recently published global consensus on prevention and management of nutritional rickets recommends vitamin D supplementation at 400 IU daily in all infants, independent of their mode of feeding in the first year of life.17 Therefore, the best way to protect infants may be to educate pregnant mothers to take vitamin D supplements during pregnancy and to give 400 IU daily vitamin D supplements to their infants.17
 
Limitations
Information bias and selection bias are two potential limitations of our study. First, for simplicity, all infants taking just one mouthful of breastmilk and those taking just one mouthful of formula were classified in the mixed feeding group. In the mixed feeding group, this information bias may mask the effect of breastfeeding on liver biochemistry. Second, the study period was chosen for convenience and not at random. This may create selection bias because outbreaks of diseases in infants tend to create clusters of clinic visits within a certain timeframe.
 
Conclusions
For full-term and normal or high birth weight infants, the most effective way to manage prolonged neonatal jaundice is to screen for cholestasis before full liver function examination. For late preterm or low birth weight infants, the most effective way to manage prolonged neonatal jaundice is to screen for cholestasis and to check bone profile (ALP, albumin, calcium, and phosphate) at the first NNJC visit.
 
Author contributions
All authors have made substantial contributions to the concept or design of this study; acquisition of data; analysis or interpretation of data; drafting of the article; and critical revision for important intellectual content.
 
Acknowledgement
The authors thank Ms CK Ho and Mr WF Wu for maintaining the neonatal jaundice clinic attendance records that made this retrospective study possible.
 
Funding/support
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
 
Declaration
All authors have disclosed no conflicts of interest. All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity. This paper was presented orally in Joint Annual Research & Scientific Meeting 2017, 19 August 2017, Hong Kong.
 
Ethical approval
Ethical approval for the study was obtained and patient/parental consent was waived by the New Territories West Cluster Clinical and Research Ethics Committee.
 
References
1. Academy of Breastfeeding Medicine Protocol Committee. ABM clinical protocol #22: guidelines for management of jaundice in the breastfeeding infant equal to or greater than 35 weeks’ gestation. Breastfeed Med 2010;5:87-93. Crossref
2. Fawaz R, Baumann U, Ekong U, et al. Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2017;64:154-68. Crossref
3. Moyer V, Freese DK, Whitington PF, et al. Guideline for the evaluation of cholestatic jaundice in infants: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2004;39:115-28. Crossref
4. Family Health Service, Department of Health, HKSAR Government. Breastfeeding Survey 2017.
5. Newman AJ, Gross S. Hyperbilirubinemia in breast-fed infants. Pediatrics 1963;32:995-1001.
6. Winfield CR, Macfaul R. Clinical study of prolonged jaundice in breast- and bottle-fed babies. Arch Dis Child 1978;53:506-7. Crossref
7. Tazawa Y, Abukawa D, Watabe M, et al. Abnormal results of biochemical liver function tests in breast-fed infants with prolonged indirect hyperbilirubinaemia. Eur J Pediatr 1991;150:310-3. Crossref
8. Siu LY, Wong KN, Li KW, et al. Outcome of hepatobiliary scanning: preterm versus full-term cholestatic infants. J Paediatr Child Health 2013;49:E46-51. Crossref
9. Landaas S, Skrede S, Steen JA. The levels of serum enzymes, plasma proteins and lipids in normal infants and small children. J Clin Chem Clin Biochem 1981;19:1075-80. Crossref
10. Gómez P, Coca C, Vargas C, et al. Normal reference-intervals for 20 biochemical variables in healthy infants, children and adolescents. Clin Chem 1984;30:407-12.
11. Jørgensen MH, Ott P, Juul A, et al. Does breast feeding influence liver biochemistry? J Pediatr Gastroenterol Nutr 2003;37:559-65. Crossref
12. Minamishima I, Ueda K, Minematsu T, et al. Role of breast milk in acquisition of cytomegalovirus infection. Microbiol Immunol 1994;38:549-52. Crossref
13. Hamprecht K, Maschmann J, Vochem M, et al. Epidemiology of transmission of cytomegalovirus from mother to preterm infants by breastfeeding. Lancet 2001;357:513-8. Crossref
14. Poddighe D, Castelli L, Marseglia GL, et al. Prolonged, but transient, elevation of liver and biliary functions tests in a healthy infant affected with breast milk jaundice. BMJ Case Rep 2014;pii:bcr2014204124. Crossref
15. Kemper K, Forsyth B, McCarthy P. Jaundice, terminating breast-feeding and the vulnerable child. Pediatrics 1989;84:773-8.
16. Woo J, Lam CW, Leung J, et al. Very high rates of vitamin D insufficiency in women of child-bearing age living in Beijing and Hong Kong. Br J Nutr 2008;99:1330-4. Crossref
17. Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab 2016;10:394-415. Crossref

Plasma soluble cluster of differentiation 147 levels are increased in breast cancer patients and associated with lymph node metastasis and chemoresistance

Hong Kong Med J 2018 Jun;24(3):252–60 | Epub 25 May 2018
DOI: 10.12809/hkmj176865
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
ORIGINAL ARTICLE
Plasma soluble cluster of differentiation 147 levels are increased in breast cancer patients and associated with lymph node metastasis and chemoresistance
YH Kuang, PhD1; YJ Liu, MSc2; LL Tang, PhD2; SM Wang, PhD2; GJ Yan, BSc2; LQ Liao, PhD2
1 Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
2 Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
 
Corresponding author: Dr LQ Liao (aq301981@163.com)
 
 Full paper in PDF
 
Abstract
Introduction: Cluster of differentiation 147 (CD147) contributes to breast cancer invasion, metastasis, and multidrug resistance. Recent studies have shown that peripheral soluble CD147 (sCD147) is increased in hepatocellular tumour and multiple myeloma patients and correlated with disease severity. This study aimed to assess the level, as well as the biological and clinical significance of sCD147 in breast cancer.
 
Methods: We tested plasma sCD147 levels in 308 breast cancer patients by enzyme-linked immunosorbent assay between February 2014 and February 2017. A subset of 165 cases of benign breast diseases was included as control group at the same period. We analysed the clinical significance of plasma sCD147 with relevance to clinicopathological factors of breast cancer patients.
 
Results: Plasma sCD147 levels were significantly higher in patients with primary breast cancer than those with benign breast diseases (P=0.001), in patients with locally advanced breast cancer (T3-T4 tumour) than those in early breast cancer (T1-T2 tumour; P=0.001), in patients with lymph node metastasis than in those without (P<0.001), and in patients with high recurrence risk than those with medium recurrence risk (P<0.001). Plasma sCD147 levels were also significantly higher in the chemotherapy-resistant group than in the chemotherapy-sensitive group (P=0.040). Plasma sCD147 was an independent predictor for lymph node metastasis in breast cancer patients (P=0.001).
 
Conclusion: This is the first study to demonstrate that plasma sCD147 levels are elevated in breast cancer patients. Soluble CD147 is also associated with tumour size, lymph node metastasis, high recurrent risk, and chemoresistance. Our findings support that plasma sCD147 is an independent predictive factor for lymph node metastasis.
 
 
New knowledge added by this study
  • Plasma sCD147 levels are elevated in breast cancer patients and are associated with tumour size, lymph node metastasis, high recurrent risk, and chemoresistance.
  • Plasma sCD147 is an independent predictive factor for lymph node metastasis.
Implications for clinical practice or policy
  • Plasma sCD147 may be used as the predictive factor to evaluate lymph node metastasis, recurrence risk, and chemoresistance of breast cancer.
  • Plasma sCD147 may contribute to the development of optimal adjuvant therapy for individual breast cancer patients.
 
 
Introduction
Breast cancer is the most common malignant tumour and the leading cause of cancer-related deaths among females in developing countries.1 Breast cancer displays heterogeneity: it comprises distinct pathologies and histological features and can have different chemotherapy responses and clinical outcomes.2 The identification of tumour-related factors that can predict tumour behaviour is important. Predictive factors can help identify as early as possible not only patients who have a high risk of recurrence and metastasis, but also patients who can benefit from different types of adjuvant therapy.3 Conventional predictive factors of high risk of recurrence and metastasis include relatively large (>5 cm) tumour size and high nuclear grade; negativity for oestrogen receptor and progesterone receptor; human epidermal growth factor receptor 2 (HER2) overexpression; and increased lymph node involvement at the time of breast cancer diagnosis.4 Recent advances in genetic profiling of tumours have extended our understanding of breast cancer biology and have allowed the use of several prognostic gene signatures to select patients at highest risk of early recurrence and those who may benefit from certain adjuvant treatment.2 5 6 However, despite receiving standard treatments routinely guided by predictive factors, more than 30% of breast cancer patients develop metastatic disease and have poor survival.7 8 As such, it is essential and urgent to identify reliable predictive factors to assist in diagnosis, staging, evaluation of recurrence risk, and development of new treatment modalities.
 
Cluster of differentiation 147 (CD147), a transmembrane glycoprotein that belongs to the immunoglobulin superfamily, can promote tumour invasion and metastasis, and mediate breast cancer drug resistance.9 10 11 12 13 Expression of CD147 is significantly correlated with axillary lymph node involvement; tumour, node, and metastasis staging; and shorter progression-free survival and overall survival.14 Previous data demonstrated that CD147 exists in both membrane-bound and soluble forms in many solid tumours, and soluble CD147 (sCD147) can be detected in the conditioned medium of tumour cells and peripheral blood of cancer patients.15 16 17 Overexpression of the CD147 gene in human breast cancer cells can increase the sCD147 level, indicating that sCD147 release is correlated with the degree of CD147 expression in tumour cells.15 16 17 Full-length CD147 may be exported into the microenvironment from tumour cells by microvesicle shedding or by matrix metalloproteinase (MMP)–dependent cleavage, thereby stimulating MMP expression in fibroblasts.18 19 20 In turn, sCD147 derived from tumour cells acts in a paracrine fashion on stromal cells that are both adjacent and distant to tumour sites, so as to further stimulate the production of MMPs and CD147. This additional CD147 consequently contributes to tumour angiogenesis, tumour growth, and metastasis.16 21 Importantly, several studies investigating the role of sCD147 level in patients with tumours have suggested that sCD147 may offer a useful approach in diagnosis, as it is correlated with disease severity.15 22 However, little is known about the level of sCD147 in patients with breast cancer. Furthermore, the biological and clinical significance of sCD147 in breast cancer has not been investigated.
 
In this study, we measured plasma sCD147 levels in patients with breast cancer and evaluated the results with respect to clinicopathological factors. We aimed to demonstrate the association between plasma sCD147 levels with tumour size, lymph node metastasis, recurrence risk, and chemoresistance in breast cancer patients.
 
Methods
Patients and samples
The results of this study are presented in accordance with the reporting recommendations for tumour marker prognostic studies.23 We conducted the study between February 2014 and February 2017 in the Affiliated Xiangya Hospital of Central South University in Changsha of Hunan Province, China. We collected peripheral blood samples from consecutive patients with breast cancer, including primary breast cancer, during their first hospital admission. To be eligible for this study, patients had to be adult females who had no other malignant diseases or severe systemic diseases, especially rheumatic, inflammatory, and cardiovascular diseases. The peripheral blood of consecutive patients with palpable benign breast masses, including fibroadenoma and adenopathy, was also collected to serve as control samples during the same period. All blood samples were centrifuged at 3000 rpm at 4°C for 5 minutes, and the plasma samples were stored at -70°C for later plasma sCD147 testing. All the patients’ clinicopathological findings were supplied by the Xiangya Hospital of Central South University. Breast cancer subtypes were identified according to the St Gallen Consensus 2013 classification system.24 Recurrence risk of breast cancer was evaluated according to the St Gallen Consensus 2007 criteria.25
 
The association between chemotherapy response and plasma sCD147 level was retrospectively analysed. The patients included in this analysis had to meet all of the following criteria: (1) had a confirmed diagnosis of invasive ductal breast carcinoma by pathology and had consented to undergo neoadjuvant chemotherapy; (2) had operable breast cancer consisting of a large tumour (>2 cm) that fulfilled the criteria for breast conserving surgery except tumour size, or triple-negative breast cancer (TNBC; ie, negative for oestrogen/progesterone receptors and HER2) with small (T1 stage) tumours; (3) had received no previous treatment; (4) had received only four cycles of pirarubicin-cyclophosphamide/epirubicin-cyclophosphamide (AC/EC)–based neoadjuvant chemotherapy before surgery; and (5) had complete hospital records that included evaluation of chemotherapy efficacy. Clinical response to AC/EC-based chemotherapy was evaluated by the decrease in tumour size and classified according to response evaluation criteria in solid tumours (RECIST criteria).26 Patients with complete remission or partial remission were classified as chemotherapy-sensitive, whereas patients with stable disease or progressive disease were classified as chemotherapy-resistant.
 
Enzyme-linked immunosorbent assay
The concentrations of plasma sCD147 were measured by enzyme-linked immunosorbent assay (ELISA). Plasma sCD147 levels were assessed using the EMMPRIN/CD147 ELISA kit (R&D Systems, Minneapolis [MN], US) according to the manufacturer’s protocol. The concentration of the sample in each ELISA well was determined by interpolation from a standard curve. Each sample was tested in duplicate.
 
Statistical analysis
The Mann-Whitney U test was used to compare levels of plasma sCD147 in different groups according to variable clinicopathological factors. The Chi squared contingency test with Yates correction was used to determine the relationship between clinicopathological factors of breast cancer patients and lymph node status or chemotherapy sensitivity. Binary logistic regression was used to assess clinicopathological factors (plasma sCD147, tumour size, and HER2) that were associated with lymph node metastasis or chemoresistance in invasive breast cancer. All multivariable logistic regression models used backward stepwise procedures, and only datasets complete for every outcome analysed were used. Receiver operating characteristic (ROC) curve analysis was performed to calculate the area under the curve and evaluate the optimal cut-off point, which was given by the maximum of the Youden index. Statistical significance was set at P<0.05. The GraphPad Prism 6 software (GraphPad Software, La Jolla [CA], US) and SPSS (Windows version 19.0; IBM Corp, Armonk [NY], US) were used for statistical analysis.
 
Results
Patient’ characteristics
Among all eligible patients with complete records, 165 had benign breast disease (age range, 22-68 years) and 308 had primary breast cancer (age range, 24-77 years). There was no significant difference in age between the two groups (P=0.381). Breast cancer patients comprised 11 with ductal carcinoma in situ and 297 with invasive ductal carcinoma. Retrospective analysis of the association of plasma sCD147 level with response to neoadjuvant chemotherapy included 175 patients who met all the inclusion criteria (Fig)—luminal A in 39, luminal B in 70, HER2-positive in 28, and TNBC in 38. In all, 170 patients had T2-T4 tumours and five had T1 TNBC tumours. Using the RECIST criteria, we assigned the 175 patients to two groups: chemotherapy-sensitive (n=126) and chemotherapy-resistant (n=49).
 

Figure. Patient flowchart
 
Plasma soluble CD147 levels in breast cancer patients
According to ELISA results, plasma sCD147 levels were significantly higher in patients with primary breast cancer than in those with benign breast disease (median [interquartile range; IQR], 8629.81 pg/mL [7426.33-10 309.20 pg/mL] vs 7625.99 pg/mL [6739.20-9140.04 pg/mL]; P=0.001). However, there was no significant difference in plasma sCD147 levels between patients with invasive breast cancer and those with ductal carcinoma in situ (8618.91 pg/mL [7404.81-10 358.50 pg/mL] vs 9185.79 pg/mL [7671.15-9626.47 pg/mL]; P=0.787). Regarding cancer subtypes of the 297 patients with invasive breast carcinoma, median (IQR) plasma sCD147 levels were significantly higher in patients with HER2-positive breast cancer (10 042.34 pg/mL [7772.01-11 058.48 pg/mL]) than in those with luminal A tumours (7991.05 pg/mL [7101.72-10 237.4 pg/mL]; P=0.007), luminal B tumours (8629.81 pg/mL [7200.45-9953.32 pg/mL]; P=0.017), and TNBC tumours (8585.16 pg/mL [7884.27-10 545.51 pg/mL]; P=0.027).
 
Association between plasma soluble CD147 and clinicopathological factors
The association between plasma sCD147 level and clinicopathological factors in patients with invasive breast cancer is summarised in Table 1. Plasma sCD147 levels increased with tumour size: median (IQR) levels were significantly higher in patients with locally advanced (stage T3-T4) than those with early (stage T1-T2) breast cancer (10 093.26 pg/mL [7974.73-11 451.21 pg/mL] vs 8561.45 pg/mL [7169.41-9952.90 pg/mL]; P=0.001). Plasma sCD147 levels were also elevated in patients with lymph node metastasis compared with those without (median [IQR], 9991.42 pg/mL [8154.61-11 452.84 pg/mL] vs 7814.78 pg/mL [6936.82-9516.85 pg/mL]; P<0.001). In addition, plasma sCD147 levels were significantly higher in patients with a high risk of recurrence than in those with a medium risk (median [IQR], 10 093.26 pg/mL [8135.35-11 679.71 pg/mL] vs 8134.68 pg/mL [7151.41-9616.68 pg/mL]; P<0.001). Although plasma sCD147 levels were elevated for the HER2- positive breast cancer subtype as compared with other breast cancer subtypes, there was no significant difference between HER2-positive and HER2-negative patients (median [IQR], 9254.34 pg/mL [7157.63-11 199.38 pg/mL] vs 8568.83 pg/mL [7448.34-10 070.42 pg/mL]; P=0.160).
 

Table 1. Association between plasma soluble CD147 and various clinicopathological factors (n=297)
 
Plasma soluble CD147 as an independent predictor for lymph node metastasis
Because plasma sCD147 was associated with lymph node status and recurrent risk, we speculated that plasma sCD147 may be a predictor for lymph node metastasis of breast cancer. Univariate analysis showed that tumour size and HER2 status may be involved in lymph node metastasis (Table 2). We subsequently used binary logistic regression analysis to identify clinicopathological factors associated with lymph node metastasis in invasive breast cancer. Our data showed that plasma sCD147 (P<0.001), HER2-positive tumours (P=0.001), and tumour size T3-T4 (P=0.005) were independent predictors of lymph node metastasis of breast cancer (Table 3). When we analysed ROC curves to evaluate use of plasma sCD147 as a diagnostic biomarker for lymph node metastasis, the area under the curve was 0.745 (95% confidence interval, 0.676-0.813) and the optimal cut-off point of plasma sCD147 was 8577 pg/mL, which provided a sensitivity of 70.9% and a specificity of 61.7%.
 

Table 2. Association between clinicopathological factors and lymph node involvement (n=297)
 

Table 3. Results of multivariable analysis of clinicopathological factors and lymph node metastasis
 
Association of plasma soluble CD147 levels with chemotherapy response
Table 1 shows that plasma sCD147 levels in the chemotherapy-resistant group were significantly higher than those in the chemotherapy-sensitive group (median [IQR], 10 093.26 pg/mL [7974.73-11 261.88 pg/mL] vs 8585.16 pg/mL [7789.74-9868.87 pg/mL]; P=0.040). Univariate analysis revealed that tumour size and HER2 status may be involved in chemotherapy response (Table 4). Binary logistic regression analysis demonstrated that plasma sCD147 was not an independent predictor for chemotherapy response of breast cancer patients, but tumour size of T3-T4 was (P=0.001) [Table 5].
 

Table 4. Association between tumour characteristics and chemotherapy response (n=175)
 

Table 5. Results of multivariable analysis of clinicopathological factors and chemotherapy resistance
 
Discussion
The tumour microenvironment plays a proactive role in malignant disease progression, including the transition from ductal carcinoma in situ to invasive cancer, tumour cell proliferation, dissemination, and metastasis.27 CD147 has been found to be overexpressed in breast cancer, associated with tumour size and staging, and predictive of poor prognosis.28 29 30 31 Tumour cells express molecules, either secreted or presented on the cell surface, that interact with surrounding stromal cells. Soluble CD147 may be released from membrane-associated CD147 as a result of both MMP proteolytic activity and microvesicle shedding in the tumour microenvironment. Soluble CD147 may then act in a paracrine fashion on stromal cells to further trigger production of MMPs and CD147; the latter contributes to tumour angiogenesis, tumour growth, and metastasis.16 19 21
 
Wu et al15 reported that serum sCD147 enhances the secretion of MMP-2 from hepatocellular carcinoma cells by activating extracellular signal-regulated kinase and focal adhesion kinase, as well as phosphoinositide-3-kinase/Akt signalling, indicating that sCD147 may contribute to hepatocellular carcinoma progression. Moreover, serum sCD147 was elevated in patients with hepatocellular carcinoma compared with healthy individuals, and sCD147 level was associated with tumour size and Child-Pugh score.15 Gross et al22 also reported that sCD147 levels were elevated in patients with multiple myeloma, and elevated levels were associated with refractory disease and shortened progression-free survival, indicating that sCD147 may be a new prognostic factor for patients with multiple myeloma.
 
A previous study demonstrated that CD147 was overexpressed in human breast cancer.10 In this study, we measured plasma sCD147 levels by ELISA and found that plasma sCD147 levels were significantly elevated in breast cancer patients compared with control patients who had benign breast diseases. We also found that plasma sCD147 was significantly elevated in lymph node metastasis in breast cancer patients. Taken together, these data show that plasma sCD147 may be released from tumour cells and promote lymph node metastasis of breast cancer. Some studies have reported that sCD147 has been detected in patients with inflammatory diseases31 or cardiovascular diseases.32 33 To eliminate interference from other diseases and conditions, we excluded patients with inflammatory or cardiovascular diseases and ensured patients in each group had a similar age distribution.
 
Previous studies have shown that membrane-bound CD147 may correlate with HER2 expression. Yan et al34 reported that CD147 induces angiogenesis by stimulating vascular endothelial growth factor production, invasiveness by stimulating MMP production, and multidrug resistance by hyaluronan-mediated upregulation of HER2 signalling. Xue et al30 reported that CD147 expression was positively correlated with HER2 overexpression. In a recent study, CD147 knockdown was shown to improve the antitumour efficacy of trastuzumab in HER2-positive breast cancer cells.35 Although we found that plasma sCD147 levels were significantly higher in the HER2-positive breast cancer subtype than in luminal A, luminal B, and TNBC subtypes, plasma sCD147 had no association with expression of HER2 or oestrogen/progesterone receptors in breast cancer. The reason for this finding is that there are four breast cancer subtypes—luminal A, luminal B, HER2-positive, and TNBC—according to oestrogen/progesterone receptor, HER2, and Ki67 status. The luminal B subtype includes some breast cancers that are positive for oestrogen/progesterone receptor and HER2. Hence, patients who are HER2-positive (Table 1) include those with HER2-positive subtype and also luminal B subtype; plasma sCD147 levels in patients who were ‘HER2-positive’ were different from those with a HER2-positive subtype.
 
It is essential to establish predictive factors to allow evaluation of the recurrence risk of breast cancer, so that optimal adjuvant therapy can be selected for individual patients.3 36 Larger tumour size at diagnosis, high proliferation factors, absence of oestrogen/progesterone receptors and HER2 overexpression, and lymph node metastasis are related to a high risk of recurrence and poor survival, and are commonly recognised as prognostic and predictive factors for breast cancer recurrence risk.4 37 38 Consistent with these findings, we found that plasma sCD147 levels were significantly increased in patients with locally advanced lymph node metastasis and a high risk of breast cancer recurrence. We also found that plasma sCD147 was positively associated with tumour size, lymph node metastasis, and high recurrence risk of invasive breast cancer.
 
Lymph node status, which confers different strategies for patients at different tumour stages, is critical information for the treatment of breast cancer, and the accurate prediction of lymph node status is a prerequisite for treatment decision. Our binary logistic regression analysis showed that plasma sCD147, HER2 positive subtype, and tumour size (T3-T4) were independent predictors for lymph node metastasis of breast cancer patients. Taken together, these data suggest that plasma sCD147 may be a new factor for the evaluation of breast cancer recurrence risk. Our ROC analysis demonstrated that plasma sCD147 could be a biomarker for distinguishing breast cancer patients with lymph node metastasis from those without; however, the sensitivity and specificity were not high (70.9% and 61.7%, respectively). The relatively low sensitivity and specificity suggest that using plasma sCD147 as the sole biomarker may result in substantial numbers of false positives and false negatives. Therefore, it may be necessary to investigate whether the combination of plasma sCD147 and other biomarkers can improve efficacy.
 
According to the data of 303 patients who were followed up for 3 to 38 months (median, 20 months), 11 patients had relapse: two had local recurrences and nine had distant metastases. The mean time of recurrence/metastasis was 23.6 months, with no difference between patients with relapse and those without (Table 6). We were not able to investigate the relationship between plasma sCD147 and disease-free survival or overall survival, because of the short median follow-up period.
 

Table 6. Follow-up data on relapse status
 
Previous data have shown that CD147 is one of the apoptosis-related proteins and it may mediate adriamycin chemoresistance in breast cancer by affecting the cellular localisation and dimerisation of the protein ABCG2 (ATP-binding cassette subfamily G member 2).10 In this study, we studied the relationship between plasma sCD147 and chemotherapy response in invasive breast cancer. All patients were given four cycles of AC/EC-based chemotherapy. We also found that plasma sCD147 levels were significantly higher in the chemotherapy-resistant group than in the chemotherapy-sensitive group, and such levels were positively associated with chemotherapy resistance. Although our data also showed that plasma sCD147, tumour size (T3-T4), and HER2 positive subtype may be involved in chemotherapy response, binary logistic regression demonstrated that tumour size (T3-T4) was an independent predictor for chemotherapy response of breast cancer patients, but plasma sCD147 was not. Owing to the small number of cases in the chemotherapy-resistant group, the statistical analysis of data may be underpowered.
 
In addition to the small sample of study and short median follow-up period, there were other limitations in this study. This study was conducted in one centre, and the researchers who extracted the data and conducted the analysis were not blinded to the study hypothesis. There may have increased selection and information bias. Furthermore, as the design of this study was relatively simple, there may be insufficient control for potential confounding factors in the multivariable analysis.
 
In conclusion, our study found that plasma sCD147 levels were elevated in breast cancer patients compared with controls with benign breast disease, and plasma sCD147 level was associated with tumour size, lymph node metastasis, high recurrence risk, and AC/EC-based chemoresistance. Moreover, our study supports that plasma sCD147 is an independent predictive factor for lymph node metastasis and is a feasible marker to distinguish breast cancer patients with lymph node metastasis from patients without.
 
Author contributions
Concept or design: LL Tang, LQ Liao.
Acquisition of data: YJ Liu, YH Kuang, SM Wang, GJ Yan.
Analysis or interpretation of data: LL Tang, LQ Liao.
Drafting of the article: YH Kuang, LQ Liao.
Critical revision for important intellectual content: YH Kuang, LQ Liao.
YH Kuang, YJ Liu, and LL Tang contributed equally to this study.
 
Funding/support
This study was supported by two grants from the National Natural Science Foundation of China (No. 81101654, awarded to LQ Liao, and No. 81573049, awarded to YH Kuang).
 
Declaration
The authors have no conflicts of interest to disclose. All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity.
 
Ethical approval
The research protocols for the use of human tissue were approved by and conducted in accordance with the policies of the Institutional Review Boards at Central South University (Ref No. 201403152), which were formulated based on the 1964 Helsinki Declaration and its later amendments. Written informed consent was obtained from all participants.
 
References
1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108. Crossref
2. Rivenbark AG, O’Connor SM, Coleman WB. Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. Am J Pathol 2013;183:1113-24. Crossref
3. Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011;22:1736-47. Crossref
4. Soerjomataram I, Louwman MW, Ribot JG, et al. An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res Treat 2008;107:309-30. Crossref
5. Adaniel C, Jhaveri K, Heguy A, et al. Genome-based risk prediction for early stage breast cancer. Oncologist 2014;19:1019-27. Crossref
6. Weigelt B, Peterse JL, van ’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer 2005;5:591-602. Crossref
7. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med 2013;274:113-26. Crossref
8. O’Shaughnessy J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist 2005;10 Suppl 3:20-9. Crossref
9. Kuang YH, Chen X, Su J, et al. RNA interference targeting the CD147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion. Cancer Lett 2009;276:189-95. Crossref
10. Zhou S, Liao L, Chen C, et al. CD147 mediates chemoresistance in breast cancer via ABCG2 by affecting its cellular localization and dimerization. Cancer Lett 2013;337:285-92. Crossref
11. Yang JM, Xu Z, Wu H, et al. Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol Cancer Res 2003;1:420-7.
12. Marieb EA, Zoltan-Jones A, Li R, et al. Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res 2004;64:1229-32. Crossref
13. Nabeshima K, Iwasaki H, Koga K, et al. Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol Int 2006;56:359-67. Crossref
14. Zhao S, Ma W, Zhang M, et al. High expression of CD147 and MMP-9 is correlated with poor prognosis of triple-negative breast cancer (TNBC) patients. Med Oncol 2013;30:335. Crossref
15. Wu J, Hao ZW, Zhao YX, et al. Full-length soluble CD147 promotes MMP-2 expression and is a potential serological marker in detection of hepatocellular carcinoma. J Transl Med 2014;12:190. Crossref
16. Tang Y, Kesavan P, Nakada MT, et al. Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res 2004;2:73-80.
17. Bordador LC, Li X, Toole B, et al. Expression of emmprin by oral squamous cell carcinoma. Int J Cancer 2000;85:347-52.
18. Taylor PM, Woodfield RJ, Hodgkin MN, et al. Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 2002;21:5765-72. Crossref
19. Sidhu SS, Mengistab AT, Tauscher AN, et al. The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 2004;23:956-63. Crossref
20. Egawa N, Koshikawa N, Tomari T, et al. Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. J Biol Chem 2006;281:37576-85. Crossref
21. Hanata K, Yamaguchi N, Yoshikawa K, et al. Soluble EMMPRIN (extra-cellular matrix metalloproteinase inducer) stimulates the migration of HEp-2 human laryngeal carcinoma cells, accompanied by increased MMP-2 production in fibroblasts. Arch Histol Cytol 2007;70:267-77. Crossref
22. Gross Z, Udd K, Ghermezi M, et al. Serum CD147 levels are increased in multiple myeloma patients and elevated levels are associated with refractory disease and shortened progression free survival. Am Soc Hematology 2016;128:5652.
23. McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 2005;97:1180-4. Crossref
24. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 2013;24:2206-23. Crossref
25. Goldhirsch A, Wood WC, Gelber RD, et al. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 2007;18:1133-44. Crossref
26. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-47. Crossref
27. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001;411:375-9. Crossref
28. Dalberg K, Eriksson E, Enberg U, et al. Gelatinase A, membrane type 1 matrix metalloproteinase, and extracellular matrix metalloproteinase inducer mRNA expression: correlation with invasive growth of breast cancer. World J Surg 2000;24:334-40. Crossref
29. Reimers N, Zafrakas K, Assmann V, et al. Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res 2004;10:3422-8. Crossref
30. Xue S, Li SX, Wu ZS, et al. Expression of CD147, matrix metalloproteinases and transforming growth factor beta1 in breast cancer [in Chinese]. Zhonghua Bing Li Xue Za Zhi 2009;38:524-8.
31. Yanaba K, Asano Y, Tada Y, et al. Increased serum soluble CD147 levels in patients with systemic sclerosis: association with scleroderma renal crisis. Clin Rheumatol 2012;31:835-9. Crossref
32. Major TC, Liang L, Lu X, et al. Extracellular matrix metalloproteinase inducer (EMMPRIN) is induced upon monocyte differentiation and is expressed in human atheroma. Arterioscler Thromb Vasc Biol 2002;22:1200-7. Crossref
33. Schmidt R, Bultmann A, Fischel S, et al. Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes. Circ Res 2008;102:302-9. Crossref
34. Yan L, Zucker S, Toole BP. Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost 2005;93:199-204.
35. Xiong L, Ding L, Ning H, et al. CD147 knockdown improves the antitumor efficacy of trastuzumab in HER2-positive breast cancer cells. Oncotarget 2016;7:57737-51. Crossref
36. Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. Oncologist 2004;9:606-16. Crossref
37. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25:5287-312. Crossref
38. Taneja P, Maglic D, Kai F, et al. Classical and novel prognostic markers for breast cancer and their clinical significance. Clin Med Insights Oncol 2010;4:15-34. Crossref

Outcomes of salvage radiotherapy for recurrent prostate cancer after radical prostatectomy

Hong Kong Med J 2018 Jun;24(3):218–25 | Epub 21 May 2018
DOI: 10.12809/hkmj176888
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
ORIGINAL ARTICLE
Outcomes of salvage radiotherapy for recurrent prostate cancer after radical prostatectomy
Eric KC Lee, MB, ChB, FHKAM (Radiology); WH Mui, MB, BS, FHKAM (Radiology); Adrian W Chan, MB, BS, FRCR; Y Tung, MB, BS, FHKAM (Radiology); Frank CS Wong, MB, ChB, FHKAM (Radiology)
Department of Clinical Oncology, Tuen Mun Hospital, Tuen Mun, Hong Kong
 
Corresponding author: Dr Eric KC Lee (leekachai2000@yahoo.com.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Salvage radiotherapy (SRT) provides effective biochemical control for patients with prostate cancer who have prostate-specific antigen (PSA) failure after radical prostatectomy. However, the effect of SRT on long-term clinical outcomes remains unknown. Therefore, we report the natural history of patients treated with SRT.
 
Methods: We identified 84 Chinese patients with prostate cancer treated with SRT to the prostatic fossa alone during 2006-2017 at Tuen Mun Hospital, Hong Kong. Survival was calculated using Kaplan-Meier method. Log rank test and Cox regression were used to determine significance of clinical parameters with outcomes.
 
Results: Median SRT dose given was 70 Gy (range, 64-76 Gy). Median pre-SRT PSA level was 0.4 ng/mL (0.2-7.4 ng/mL). After SRT, 47 (56%) patients had undetectable (<0.1 ng/mL) PSA levels. After median follow-up of 48 months (2 months to 10 years), 25 (30%) patients had further biochemical progression. Subsequently, 12 patients received androgen deprivation therapy and nine (11%) developed distant metastasis. The 5-year biochemical progression–free survival, androgen deprivation therapy–free survival and metastasis-free survival were 62.7%, 83.5% and 86.7%, respectively. Early PSA failure after radical prostatectomy (hazard ratio=7.4), negative surgical margin (hazard ratio=2.7), positive extracapsular extension (hazard ratio=4.6), and detectable PSA levels after SRT (hazard ratio=17.3) were associated with lower biochemical progression–free survival after SRT.
 
Conclusions: High-dose SRT with intensity-modulated radiotherapy/volumetric modulated arc radiotherapy is an effective local treatment that can prevent distant metastasis and avoid the need for androgen deprivation therapy in Chinese patients who have PSA failure after radical prostatectomy.
 
 
New knowledge added by this study
  • Better biochemical progression–free survival after salvage radiotherapy (SRT) can be achieved through higher radiation doses and better selection of patients.
  • Patients with prostate-specific antigen (PSA) failure ≤24 months after radical prostatectomy, negative surgical margin, positive extracapsular extension, or detectable PSA after SRT are more likely to develop biochemical progression after SRT.
Implications for clinical practice or policy
  • Distant metastasis is more likely to occur in patients with extracapsular extension, patients who cannot achieve biochemical complete response, and patients who develop biochemical progression within 1 year of SRT.
  • For these patients, close monitoring for distant metastasis may be needed.
 
 
Introduction
Prostate cancer (PCa) is the most common non-cutaneous malignancy among men in western countries, and is the third most common cancer among men in Hong Kong.1 Increasing public awareness in the Chinese community, as well as the common use of prostate-specific antigen (PSA) tests by primary health physicians, have led to detection of PCa at an earlier stage, when it is amenable to either radical surgery or radiotherapy (RT).2 Because of recent advancements in operative management, such as robotic-assisted laparoscopic prostatectomy,3 many patients have found radical prostatectomy (RP) the preferred treatment option. Nevertheless, adjuvant radiotherapy (ART) to the prostatic fossa is indicated postoperatively in cases with positive surgical margin (SM), or residual disease from extracapsular extension (ECE). Alternatively, patients may receive salvage radiotherapy (SRT) when there is PSA failure, defined as any detectable and rising PSA level after RP.
 
Currently, ART is still being compared with SRT in three randomised controlled trials (RADICALS, RAVES, GETUG-AFU 17).4 5 6 While the results of these European and Australasian studies are still pending, the American Society for Radiation Oncology/American Urological Association guidelines recommend that physicians offer SRT to patients with PSA or local recurrence after RP in whom there is no evidence of distant metastasis (DM).7 Patients should be advised that SRT should be administered at the earliest sign of PSA recurrence. Approximately 60% of patients who are treated with SRT before the PSA level rises to >0.5 ng/mL will achieve an undetectable PSA level, providing long-term PSA control in nearly half of them.8
 
However, after SRT, some patients may still experience further clinical progression, including DM and cancer-related death. The effect of SRT on the long-term outcomes including metastasis-free survival (MFS) and overall survival—especially in Chinese patients—is not well understood. Herein we report the long-term survival data of patients at a single institution in Hong Kong who received SRT to the prostatic fossa using modern RT techniques.
 
Methods
Patient selection
Using the MOSAIQ system (version 2.62, IMPAC Medical Systems, Inc.; Sunnyvale [CA], US), we identified 91 Chinese patients treated with postoperative RT to the prostatic fossa at Tuen Mun Hospital, Hong Kong, between 2006 and 2017. The treatment records and clinical data of these patients were reviewed. Two patients who received ART with undetectable PSA were excluded. Patients who had received androgen deprivation therapy (ADT) prior to SRT were also excluded. These selection criteria yielded 84 evaluable individuals who received SRT to the prostatic fossa alone for PSA failure (defined as detection of PSA concentration at 0.2 ng/mL, with a second confirmatory level detected at 0.2 ng/mL) more than 3 months after RP.
 
Radiation therapy techniques
A planning computed tomographic scan was performed for each patient with 3-mm slice thickness, and the clinical target volume was determined with reference to one of the published consensus guidelines.9 10 11 The usual boundaries of the clinical target volume are: inferiorly, 5 mm below the urethral anastomosis; anteriorly, the posterior aspect of the symphysis pubis or the posterior third of the bladder; laterally, the medial border of the obturator internus and levator ani muscles; posteriorly, the anterior mesorectal fascia; and superiorly, 5 mm above the surgical bed. The planning target volume was defined as clinical target volume with a margin of 4 to 5 mm posteriorly and 0.7 to 1 cm in all other directions. Organs at risk, including the rectum, bladder, and bilateral femoral heads were contoured. Conformal radiotherapy or inverse planning techniques with intensity-modulated radiotherapy (IMRT) using seven to nine static beams were used before October 2010. After that, volumetric modulated arc radiotherapy (VMAT) was employed using the Pinnacle treatment planning system (Philips Medical Systems, Fitchburg [WI], US) with treatment delivered through one to two dynamic cone arcs.
 
Variable definition
Clinical data included age at SRT, time from surgery to RT (≤24 months vs >24 months), SRT dose, pre-SRT PSA level, and post-SRT nadir PSA. Pathological data consisted of pathological T stages (T2a vs T2b vs T2c vs T3a or T3b), ECE, seminal vesicle invasion, SM, and pathological Gleason scores (≤7 or ≥8).
 
Outcome definition
After SRT, patients were followed up with PSA level checks every 3 months in the first 2 years, every 6 months from year 3 to year 5, then annually. A complete response was defined as an undetectable nadir PSA (<0.1 ng/mL). Biochemical progression (PSA failure) was defined as a rise of PSA level by 0.2 ng/mL above the nadir with a second confirmation at least 1 week apart.12 Biochemical progression-free survival (bPFS) was defined as the date from SRT completion to the first date of biochemical progression. Patients who showed biochemical progression or symptoms suggestive of metastasis received imaging studies at the discretion of the oncologist. Metastasis-free survival was defined as the date from SRT completion to the date of occurrence of metastasis on imaging. Patients who showed biochemical progression with or without metastasis were counselled on the use of ADT; ADT-free survival was defined as the date of SRT completion to the first date of ADT administration.
 
Statistical analyses
The Kaplan-Meier method was used to estimate bPFS, MFS, and ADT-free survival. Log-rank tests and Cox regression analysis were used to test the association between groups and oncologic outcomes. Covariates consisted of continuous variables, including patient age at SRT, SRT dose, and pre-SRT PSA, and discrete variables including post-SRT nadir PSA (detectable vs undetectable), pathological T stages (T2a vs T2b vs T2c vs T3a vs T3b), pathological Gleason score (≤7 vs ≥8), SM (negative vs positive), ECE (negative vs positive), seminal vesicle invasion (negative vs positive), and time of SRT (≤24 months after RP or >24 months after RP). Only variables that were significantly associated with outcomes on univariate analyses were further tested for association in multivariate analyses.
 
Statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0 (IBM Corp, Armonk [NY], US), and numerical data were presented according to Cole.13
 
Results
Patients
The median age of the 84 patients was 68 years (range, 52-79 years) when they received SRT. The patients’ median pre-SRT PSA level was 0.4 ng/mL (range, 0.2-7.4 ng/mL). Of the patients, 63 (75%) had positive SM in their prostatectomy specimens. Extracapsular extension was detected in 25 (29.8%) patients. Pelvic lymph nodes of 41 patients were sampled during RP and were all found to be negative for malignancy. These and other pathological characteristics are summarised in Table 1. The median time from surgery to start of SRT was 18.4 months (range, 3.8-121 months).
 

Table 1. Patient and RP pathological characteristics (n=84)
 
Treatment delivery
Before October 2010, one patient was treated with conformal RT and 10 patients were treated with IMRT. Subsequently the other 73 patients were treated with VMAT. The median dose given to the prostatic fossa was 70 Gy (range, 64-76 Gy), with 66 (79%) patients receiving a dose of ≥70 Gy. The mean dose delivered using VMAT (69.5 Gy) was slightly higher than that delivered using IMRT/conformal RT (68.1 Gy) [independent-samples t test, t=2.1; P=0.028].
 
Treatment outcome
Of 84 patients, 47 (56%) had undetectable PSA levels (complete response; <0.1 ng/mL) after SRT. After a median follow-up of 48 months (range, 2-120 months), 25 (30%) patients had biochemical progression with an estimated 5-year bPFS of 62.7% (95% confidence interval [CI], 50.1-75.3%) [Fig 1a]. Among the 25 patients who developed biochemical progression after SRT, seven were found to have DM and subsequently received ADT, and five started ADT in the absence of DM, two of whom later developed DM and had their disease became castration-resistant. Overall, 12 patients received ADT and nine (11%) patients developed DM. The 5-year ADT-free survival and MFS were 83.5% (95% CI, 73.7-93.3%) and 86.7% (95% CI, 77.7-95.7%), respectively (Fig 1b, c). Notably, only six patients died, all from causes other than PCa.
 

Figure 1. (a) Biochemical progression–free survival, (b) androgen deprivation therapy–free survival, and (c) metastasis-free survival of patients after salvage radiotherapy
 
Biochemical progression–free survival and metastasis-free survival
On univariate analysis, a post-SRT nadir PSA ≥0.1 ng/mL, positive ECE, and bPFS ≤12 months were significantly associated with a shorter MFS (all P<0.001; Fig 2). Similarly, a post-SRT nadir PSA ≥0.1 ng/mL (P<0.001), positive ECE (P<0.001), negative SM (P=0.045), pathological Gleason score ≥8 (P=0.002), and time from surgery to SRT ≤24 months (P=0.008) were significant predictors of a shorter bPFS (Fig 3). The pre-SRT PSA level, age, and SRT dose were not associated with either MFS or bPFS in this cohort on univariate analysis. On multivariate analysis using the Cox regression method, negative SM (hazard ratio [HR]=2.7; 95% confidence interval [CI], 1.1-6.6), positive ECE (HR=4.6; 95% CI, 1.8-11.7), post-SRT nadir PSA ≥0.1 ng/mL (HR=17.3; 95% CI, 5.3-57.0), and time from surgery to SRT ≤24 months (HR=7.4; 95% CI, 2.2-24.0) retained significant association with a shorter bPFS (Table 2). There was no variable significantly associated with MFS after multivariate analysis.
 

Figure 2. Metastasis-free survival by (a) nadir PSA; (b) bPFS; and (c) ECE (all P<0.001)
 

Figure 3. Biochemical progression–free survival by (a) nadir PSA; (b) GS; (c) SM; (d) ECE; and (e) time from RP to SRT
 

Table 2. Predictive factors of shorter bPFS on multivariate analysis
 
Discussion
Most patients who develop biochemical recurrence after RP for localised PCa remain asymptomatic for many years.14 However, patients with increasing PSA level are at high risk of developing DM. Salvage radiotherapy is effective in terms of biochemical control when it is administered at low PSA level. Stephenson et al12 reported a 6-year progression-free probability of 32% after SRT. In their multi-institutional retrospective cohort of 1603 consecutive patients from 17 North American tertiary referral centres who received SRT after RP for PSA recurrence between 1987 and 2005, the median dose was only 64.8 Gy (interquartile range, 63-66 Gy) delivered using older techniques. The 5-year bPFS of 62.7% in the present study is similar or better than those reported in western countries.12 15 16 This might be due to better selection of patients (most patients started SRT when their PSA level was ≤0.5 ng/mL), or the higher dose of SRT to the prostatic fossa (median 70 Gy). In our cohort, all patients but one were treated using IMRT/VMAT. Intensity-modulated radiotherapy was introduced in the 1990s and it has since enabled radiation oncologists to deliver higher doses of radiation to treat patients with PCa—including patients with residual disease at the prostatic fossa—without causing excessive radiation damage to healthy tissue.17 18 19 Volumetric modulated arc radiotherapy has recently attracted much interest because it can dynamically deliver a radiation dose during rotation of the gantry; this is also superior to IMRT in terms of its plan qualities and efficiency in the treatment of PCa.20 21
 
Pisansky et al22 reported that SRT doses of ≥66.0 Gy were associated with reduced cumulative incidence of biochemical progression. A systemic review by King23 provides level 2a evidence for escalated SRT dose of at least 70 Gy. A 2% improvement in relapse-free survival can be achieved for each additional Gy from 60 Gy to 70 Gy.23 However, higher SRT dose was not shown to be associated with better bPFS/MFS in our 84 patients by univariate analysis, because most (79%) had been treated with an SRT dose of ≥70 Gy, and the follow-up time may still be too short to demonstrate any further dose-response relationship. We postulated that such high-dose SRT can be delivered safely with modern techniques using VMAT, therefore our current usual prescribed dose is 70 Gy to the prostatic fossa, unless limited by dose constraints of the organ at risk. We have previously shown the efficiency and low toxicities using VMAT for SRT to the prostatic fossa.24 Longer follow-up is necessary to ensure that late complications are within safety limits.
 
Despite the success of SRT in biochemical control, some patients may develop further biochemical progression. In our present study, patients whose surgical pathology revealed negative margin and positive ECE had a shorter bPFS (HRs of 2.7 and 4.6, respectively). Patients who start SRT within 2 years of RP may also have a shorter PSA doubling time, leading to earlier detection of recurrence. These patients have a greater than 7-fold higher risk of biochemical regression after SRT than those with later recurrence. Salvage radiotherapy to the prostatic fossa alone cannot eradicate cancer that has spread outside the surgical bed after RP. In fact, negative SM, positive ECE, and shorter PSA doubling time are three of the many adverse factors which predict a shorter bPFS after SRT, using the nomogram proposed by Stephenson et al.25 However, we cannot demonstrate the importance of pre-SRT PSA level in our patient cohort because more than 65% of the patients had started SRT when their PSA level was ≤0.5 ng/mL.
 
Overall, the role of SRT in improving MFS and overall survival is less certain, because the disease can be indolent and mortality due to causes other than PCa is more likely in older patients. Patients also have other complications related to disease progression, such as painful bone metastasis. Efforts have been made to identify surrogate endpoints that can predict further disease progression, metastasis, and even cancer-related death after SRT. In a single institution review, Johnson et al26 reported approximately 50% of men experience further biochemical progression after SRT. Those who have a short interval to biochemical progression of ≤18 months after SRT are most likely to experience DM, PCa-specific mortality, and overall mortality. Bartkowiak et al27 reported on the long-term outcomes of patients with a median follow-up of 7 years (maximum, 14 years) after SRT. They found that a post-SRT nadir PSA <0.1 ng/mL was associated with improved bPFS and overall survival. The results of our univariate analysis support the abovementioned findings27 (Fig 2a, b). On multivariate analysis, we found that undetectable nadir PSA (<0.1 ng/mL) is the most important factor for predicting longer bPFS (Table 2). In the present study, of the 47 patients who achieved biochemical complete response after SRT, none developed DM. In contrast, among the 25 patients who had biochemical progression, nine whose disease progressed within 1 year after SRT eventually developed DM. Although our result of a 5-year MFS of nearly 90% is encouraging, with the median follow-up of only 4 years, we can hypothesise only that better biochemical control is correlated with improvements in other clinical outcomes. For patients whose PSA level does not become undetectable and rapidly rises within 1 year after SRT (bPFS ≤12 months), close monitoring for DM may be needed.
 
The improvement in overall survival and MFS of adjuvant ADT with SRT has been demonstrated by Shipley et al28 in a phase III study. However, ADT is not routinely recommended to our patients because of the known metabolic and cardiovascular toxicities and the negative impact on patients’ quality of life. In addition, most of our patients have fewer adverse features than those reported by Shipley et al.28 For patients with biochemical regression alone after SRT, we suggest monitoring for any site of disease recurrence such that further SRT could still be feasible. Nonetheless, we applied positron emission tomography with 68 Ga-labelled prostate-specific membrane antigen (PET-PSMA) to identify the site of recurrence in four of our patients when their PSA levels increased to ≥2.2 ng/mL (Table 3). All four patients were found to have DM which was not amenable to further local treatment and ADT had become their only option. It remains unclear whether PET-PSMA or other imaging studies at lower PSA levels are sensitive or useful enough to alter the management decision.29 Further research to study the use of novel radiological examinations in this situation is needed.
 

Table 3. Pattern of disease progression
 
Conclusions
This is the first report to demonstrate the therapeutic effects in terms of bPFS and MFS of SRT in Chinese patients in a Hong Kong centre. Salvage radiotherapy is an effective local treatment that can prevent DM and avoid the need for ADT in most patients who have PSA failure after RP in Chinese patients. Our results appear to be better than those of some studies in western countries, in which older radiotherapy techniques and lower radiation doses were used. The limitations of our study include the retrospective design with lack of evaluation of patients’ reported outcome, small sample size, and short duration of follow-up. A multi-institutional study is recommended to collect more local data and experiences.
 
Author contributions
Concept or design: EKC Lee, Y Tung.
Acquisition of data: EKC Lee, AW Chan.
Analysis or interpretation of data: EKC Lee.
Drafting of the article: EKC Lee, WH Mui, FCS Wong.
Critical revision for important intellectual content: EKC Lee, WH Mui, FCS Wong.
 
Funding/support
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
 
Declaration
All authors have no conflicts of interest to disclose. All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity. An earlier version of this paper was presented as poster presentation at the 9th European Multidisciplinary Meeting on Urological Cancers, 16-19 November 2017, Barcelona, Spain.
 
Ethical approval
The study was conducted with approval from the New Territories West Cluster Clinical and Research Ethics Committee.
 
References
1. Hospital Authority, HKSAR Government. Leading cancer sites in Hong Kong in 2014. Available from: http://www3.ha.org.hk/cancereg/pdf/top10/rank_2014.pdf. Accessed Jul 2017.
2. Poon DM, Chan SL, Leung CM, et al. Efficacy and toxicity of intensity-modulated radiation therapy for prostate cancer in Chinese patients. Hong Kong Med J 2013;19:407-15. Crossref
3. Ng AT, Tam PC. Current status of robot-assisted surgery. Hong Kong Med J 2014;20:241-50. Crossref
4. Parker C, Clarke N, Logue J, et al. RADICALS (Radiotherapy and Androgen Deprivation In Combination After Local Surgery). Clin Oncol (R Coll Radiol) 2007;19:167-71. Crossref
5. Richaud P, Sargos P, Henriques de Figueiredo B, et al. Postoperative radiotherapy of prostate cancer [in French]. Cancer Radiother 2010;14:500-3. Crossref
6. Trans Tasman Radiation Oncology Group. RAVES trial: radiotherapy—adjuvant versus early salvage. Available from: http://www.clinicaltrial.gov/ct2/show/NCT00860652. Accessed Jul 2017.
7. Valicenti RK, Thompson I Jr, Albertsen P, et al. Adjuvant and salvage radiation therapy after prostatectomy: American Society for Radiation Oncology/American Urological Association guidelines. Int J Radiat Oncol Biol Phys 2013;86:822-8. Crossref
8. Wiegel T, Lohm G, Bottke D, et al. Achieving an undetectable PSA after radiotherapy for biochemical progression after radical prostatectomy is an independent predictor of biochemical outcome—results of a retrospective study. Int J Radiat Oncol Biol Phys 2009;73:1009-16. Crossref
9. Michalski JM, Lawton C, El Naqa I, et al. Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2010;76:361-8. Crossref
10. Poortmans P, Bossi A, Vandeputte K, et al. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. Radiother Oncol 2007;84:121-7. Crossref
11. Sidhom MA, Kneebone AB, Lehman M, et al. Post-prostatectomy radiation therapy: consensus guidelines of the Australian and New Zealand Radiation Oncology Genito-Urinary Group. Radiother Oncol 2008;88:10-9. Crossref
12. Stephenson AJ, Scardion PT, Kattan MW, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol 2007;25:2035-41. Crossref
13. Cole TJ. Too many digits: the presentation of numerical data. Arch Dis Child 2015;100:608-9. Crossref
14. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999;281:1591-7. Crossref
15. Geinitz H, Riegel MG, Thamm R, et al. Outcome after conformal salvage radiotherapy in patients with rising prostate-specific antigen levels after radical prostatectomy. Int J Radiat Biol Oncol Phys 2012;82:1930-7. Crossref
16. Fossati N, Karnes RJ, Boorjian SA, et al. Long-term impact of adjuvant versus early salvage radiation therapy in pT3N0 prostate cancer patients treated with radical prostatectomy: results from a multi-institutional series. Eur Urol 2017;71:886-93. Crossref
17. Goldin GH, Sheets NC, Meyer A, et al. Patterns of intensity modulated radiation therapy (IMRT) use for the definitive and postoperative treatments of prostate cancer: a SEER-medicare analysis. Int J Radiat Oncol Biol Phys 2011;81(2 Suppl):S408. Crossref
18. Nath SK, Sandhu AP, Rose BS, et al. Toxicity analysis of postoperative image-guided intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2010;78:435-41. Crossref
19. Ost P, De Troyer B, Fonteyne V, Oosterlinck W, De Meerleer G. A matched control analysis of adjuvant and salvage high-dose postoperative intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2011;80:1316-22. Crossref
20. Kopp RW, Duff M, Catalfamo F, Shah D, Rajecki M, Ahmad K. VMAT vs. 7-field-IMRT: assessing the dosimetric parameters of prostate cancer treatment with a 292-patient sample. Med Dosim 2011;36:365-72. Crossref
21. Palma D, Vollans E, James K, et al. Volumetric modulated arc therapy for delivery of prostate radiotherapy: reduction in treatment time and monitor unit requirements compared to intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 2008;72(1 Suppl):S312. Crossref
22. Pisansky TM, Agrawal S, Hamstra DA, et al. Salvage radiation therapy dose response for biochemical failure of prostate cancer after prostatectomy—A multi-institutional observational study. Int J Radiat Oncol Biol Phys 2016;96:1046-53. Crossref
23. King CR. The dose-response of salvage radiotherapy following radical prostatectomy: a systemic review and meta-analysis. Radiother Oncol 2016;121:199-203. Crossref
24. Lee EK, Yuen KK, Mui WH, et al. Salvage radiotherapy to the prostatic fossa using volumetric-modulated arc therapy: early results. Hong Kong J Radiol 2013;16:191-7. Crossref
25. Stephenson AJ, Shariat SF, Zelefsky MJ, et al. Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy. JAMA 2004;291:1325-32. Crossref
26. Johnson S, Jackson W, Li D, et al. The interval to biochemical failure is prognostic for metastatic, prostate cancer-specific mortality, and overall mortality after salvage radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2013;86:554-61. Crossref
27. Bartkowiak D, Bottke D, Thamm R, Siegmann A, Hinkelbein W, Wiegel T. The PSA-response to salvage radiotherapy after radical prostatectomy correlates with freedom from progression and overall survival. Radiother Oncol 2016;118:131-5. Crossref
28. Shipley WU, Seiferheld W, Lukka HR, et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. N Engl J Med 2017;376:417-28. Crossref
29. Perera M, Papa N, Christidis D, et al. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systemic review and meta-analysis. Eur Urol 2016;70:926-37. Crossref

Hypospadias surgery in children: improved service model of enhanced recovery pathway and dedicated surgical team

Hong Kong Med J 2018 Jun;24(3):238–44 | Epub 21 May 2018
DOI: 10.12809/hkmj177039
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
ORIGINAL ARTICLE
Hypospadias surgery in children: improved service model of enhanced recovery pathway and dedicated surgical team
YS Wong, FHKAM (Surgery); Kristine KY Pang, FHKAM (Surgery); YH Tam, FHKAM (Surgery)
Division of Paediatric Surgery and Paediatric Urology, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
 
Corresponding author: Dr YH Tam (pyhtam@surgery.cuhk.edu.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Children in Hong Kong are generally hospitalised for 1 to 2 weeks after hypospadias repairs. In July 2013, we introduced a new service model that featured an enhanced recovery pathway and a dedicated surgical team responsible for all perioperative services. In this study, we investigated the outcomes of hypospadias repair after the introduction of the new service model.
 
Methods: We conducted a retrospective study on consecutive children who underwent primary hypospadias repair from January 2006 to August 2016, comparing patients under the old service with those under the new service. Outcome measures included early morbidity, operative success, and completion of enhanced recovery pathway.
 
Results: The old service and new service cohorts comprised 176 and 126 cases, respectively. There was no difference between the two cohorts in types of hypospadias and surgical procedures performed. The median hospital stay was 2 days in the new service cohort compared with 10 days in the old service cohort (P<0.001). Patients experienced less early morbidity (5.6% vs 15.9%; P=0.006) and had a lower operative failure rate (20.2% vs 44.2%; P<0.001) under the new service than the old service. Multivariable analysis revealed that the new service significantly reduced the odds of early morbidity (odds ratio=0.35, 95% confidence interval=0.15-0.85; P=0.02) and operative failure (odds ratio=0.32, 95% confidence interval=0.17-0.59; P<0.001) in comparison with the old service. Of the new service cohort, 111(88.1%) patients successfully completed the enhanced recovery pathway.
 
Conclusions: The enhanced recovery pathway can be implemented safely and effectively to primary hypospadias repair. A dedicated surgical team may play an important role in successful implementation of the enhanced recovery pathway and optimisation of surgical outcomes.
 
 
New knowledge added by this study
  • Children can be discharged early from hospital after primary hypospadias repairs, regardless of the severity of the hypospadias and the surgical techniques used.
  • Improved operative success of hypospadias repair may be achieved by dedicated hypospadias surgeons.
Implications for clinical practice or policy
  • Primary hypospadias repair in children can be considered as short-stay surgery.
  • Tertiary centres for hypospadias may consider concentration of hypospadias repairs among a few dedicated surgeons.
 
 
Introduction
Hypospadias is a congenital abnormality of the external genitalia in boys, and is defined as an arrest in the embryological development of the urethra, foreskin, and ventral aspect of the penis.1 Hypospadias is characterised by abnormal foreskin with a dorsal hood and an ectopic urethral meatus, which can be located anywhere from the ventral aspect of the glans penis, along the penile shaft, within the scrotum, to the perineum (Fig 1). Hypospadias can be classified broadly into distal, mid-shaft, or proximal types, with the proximal type being the most severe form. In general, more severe forms of hypospadias are associated with a higher incidence and severity of penile ventral curvature (chordee).1
 

Figure 1. Distal hypospadias (left) and proximal hypospadias (right)
Ectopic urethral meatus are indicated by arrows
 
Hypospadias repair is generally recommended in early childhood for improved function and cosmesis.2 Although advances in surgical techniques have resulted in favourable outcomes with high success rates for distal hypospadias repair,3 proximal hypospadias repair remains challenging, and complication rates have been reported to be as high as over 50%.4 Postoperatively, the urethral catheter is usually left in place for free drainage for 5 to 7 days in distal repair5 and from 10 to 14 days in proximal repair.6 In many parts of the world, including North America, patients generally have a very short stay in hospital and are discharged home with urethral catheters in situ.7 In contrast, conventional practice in Hong Kong has been to provide in-patient care after hypospadias surgery until removal of the urethral catheter.
 
The Division of Paediatric Surgery and Paediatric Urology at the Prince of Wales Hospital has been a tertiary referral centre for hypospadias surgery for over two decades. We introduced a new service (NS) model in July 2013, which featured the establishment of a dedicated surgical team and the implementation of an enhanced recovery pathway (ERP). The present study aimed to compare the outcomes of the NS model with those of the old service (OS) model. We hypothesised that ERP implementation by a dedicated surgical team would reduce the risk of early morbidity and increase the operative success of hypospadias repair.
 
Methods
Patients
A historical cohort study was conducted on consecutive patients younger than 18 years who underwent primary repair of hypospadias in our centre from January 2006 to August 2016. The patients were identified using both the ICD-10 (International Classification of Diseases, 10th revision) code related to hypospadias surgery and the registry of operative procedures entry in operating theatres. We used ICD-10 code 752.61, which covered the diagnosis of various types of hypospadias, as well as codes 58.45 and 58.46, which covered various techniques of hypospadias repairs. The patients underwent either one-stage tubularised incised plate (TIP) repair5 8 (Fig 2), or two-stage preputial flap repair9 (Fig 3), as these two techniques had been our standard practice for primary repair of hypospadias from distal to proximal types during the study period. We excluded reoperative hypospadias repairs and repairs with buccal mucosal graft (BMG). Reoperative hypospadias surgery is highly variable in complexity, involves multiple surgical techniques, and is usually investigated separately from primary hypospadias surgery in literature. Children who undergo BMG harvest are generally not considered suitable for early hospital discharge. Moreover, BMG is used rarely in hypospadias surgery, and only under special circumstances. We also excluded minor hypospadias repairs by meatal advancement with glansplasty or meatoplasty alone, as such procedures did not require prolonged urethral catheterisation.
 

Figure 2. Before (left) and after (right) one-stage tubularised incised plate repair
Ectopic urethral meatus are indicated by arrows
 

Figure 3. Before (left) and after (right) two-stage preputial flap repair
Ectopic urethral meatus are indicated by arrows
 
New service model versus old service model
In this study, we assigned patients to two cohorts. The OS cohort was the control cohort comprising patients on whom we operated from January 2006 to June 2013. All the patients in this cohort remained as in-patients until removal of the urethral catheter and received intravenous antibiotics and regular wound care by medical staff in the postoperative period. Six specialist paediatric surgeons were involved in performing the repairs in the OS cohort. The NS cohort comprised patients who underwent surgery in July 2013 or thereafter. Patients in the NS cohort were routinely discharged on postoperative day 2 or, rarely, on postoperative day 3, with their urethral catheters in situ. The dedicated surgical team comprising three (initially only two) specialist paediatric surgeons who subspecialised in paediatric urology provided all perioperative services, including handling of the consent process, surgical repairs, postoperative demonstration of wound care, and explanation of the discharge plan. Parents or main caregivers were instructed to perform saline irrigation to the penile wound at home 3 to 4 times per day. Patients received oral antibiotics and were scheduled to return in a day visit for removal of urethral catheters by a member of the dedicated team. Parents were instructed to call the ward to arrange an unplanned consultation visit if necessary. After urethral catheter removal, patients were followed up at 2 to 4 weeks, 3 months, 6 to 9 months, and then yearly thereafter.
 
Outcome measures
Medical records were retrospectively reviewed and data were collected by the authors, who were not blinded to the type of service model. Data collected were age at time of surgery, type of hypospadias, type of surgical repair, early morbidity, length of hospital stay (LOS), unplanned hospital visits, and follow-up evaluation for long-term complications. Data on the types of hypospadias and surgical techniques were based on the operative findings and surgical procedures documented in the operative records. The presence of any early morbidity was based on investigation results (including urine/wound swab culture) and/or documentations of urethral catheter dislodgement, wound bleeding, or wound gaping in the early postoperative period when the urethral catheter was in situ. The presence of any long-term complications was based on the findings in the latest follow-up visit, or any reintervention/reoperation records subsequent to the primary surgery. When collecting data, we tried to minimise potential bias regarding long-term complications by defining such complications as meatal stenosis, neourethra dehiscence, urethral fistula, urethral stricture or diverticulum, and significant recurrent chordee. All of these long-term complications required re-intervention/reoperation and were documented if present.
 
Primary outcomes of interest were early morbidity and operative failure. Early morbidity was defined by the presence of one or more of the following conditions when the urethral catheter was still in situ: urinary tract infection, catheter dislodgement, and wound-related events (bleeding/infection/gaping). In the OS cohort, early morbidity was detected during the hospitalisation period after hypospadias repair. In the NS cohort, early morbidity was detected at the time of urethral catheter removal or during unplanned hospital visits before the scheduled date of urethral catheter removal.
 
Successful or failed repair was determined during follow-up in those who had undergone TIP repair or had completed both stages of the two-stage repair. Operative failure was defined as the development of one or more of the long-term complications that required reoperation or reintervention. The secondary outcome measure was the successful completion rate of ERP. Failure of ERP was defined as any unplanned hospital visit earlier than the scheduled date for urethral catheter removal. Failure was further subdivided into day visit or overnight stay.
 
Statistical analysis
Discrete variables were expressed as percentage frequency, whereas continuous variables were reported as mean with standard deviation or median with interquartile range (IQR). The two cohorts were compared using Chi squared, Fisher’s exact, Student’s t, and Mann-Whitney U tests, as appropriate. Using the outcomes of early morbidity and operative failure, multivariable analysis was performed using a logistic regression model by the enter method, which estimated the odds ratios (ORs) and 95% confidence intervals (95% CIs) of potential associated factors, including age at the time of surgery, type of hypospadias, type of surgical repair, and the service model. Statistical analysis was performed with SPSS (Windows version 23; IBM Corp, Armonk [NY], United States). A two-tailed P value of <0.05 was considered to be statistically significant. Based on type I error of 0.05 and power of 0.8, 82 to 152 cases in each cohort would be required to show any two-tailed significant difference in the operative failure rates with a difference of 15% to 20% between the two cohorts.
 
Results
There were 302 major primary hypospadias repairs (OS cohort=176; NS cohort=126) eligible for inclusion in the study. We identified 107 cases of reoperative hypospadias repairs and one case of BMG during the study period; these were excluded from this study. No patients were lost to the first follow-up examination after urethral catheter removal. The median follow-up durations of the OS and NS cohorts were 32 (IQR, 20-58) and 20 (IQR, 14-30) months, respectively (P<0.001).
 
Of the NS cohort, 111 (88.1%) patients successfully completed the ERP. Of the 15 patients who failed to complete ERP, 11 (8.7% of total) returned earlier in an unplanned day visit for wound assessment; these patients only required reassurance without any intervention. Four patients (3.2% of total) required additional overnight hospital stay. Reasons for additional overnight stay were minor wound bleeding (n=1), dislodgement of urethral catheter (n=2), and social reasons (n=1). The patient who failed ERP for social reasons was an orphan, and staff at the orphanage found it difficult to perform wound care at their institution.
 
Table 1 summarises the findings comparing patient characteristics and early morbidity between the two cohorts. The median age at the time of surgery was older in the OS than the NS cohort (P<0.001). There was no difference between the two groups in type of hypospadias, type of surgical procedures, and time interval between surgery and urethral catheter removal. The median LOS was 2 days in the NS cohort versus 10 days in the OS cohort (P<0.001). Patients in the NS cohort experienced less early morbidity than those in the OS cohort (5.6% vs 15.9%; P=0.006).
 

Table 1. Results of univariable analysis comparing baseline characteristics and early morbidity of the two cohorts
 
Excluding patients who had received only the first stage of a two-stage repair, 138 and 109 patients of the OS and NS cohort were eligible for assessment of operative success, respectively. Patients in the NS cohort had a lower operative failure rate than those in the OS cohort (20.2% vs 44.2%; P<0.001). Specifically, patients in the NS cohort had a lower incidence of urethral fistula and dehiscence than patients in the OS cohort (P=0.002 and 0.001); there were no differences in the other complications (Table 2).
 

Table 2. Results of univariable analysis comparing operative failure rates of the two cohorts
 
In the multivariable analysis, the NS model was the only factor that was independently associated with reduced odds of early morbidity (OR=0.35, 95% CI=0.15-0.85; P=0.02). The NS model was also associated with reduced odds of operative failure (OR=0.32, 95% CI=0.17-0.59; P<0.001) compared with the OS model. Compared with proximal hypospadias, distal hypospadias had reduced odds for operative failure (OR=0.14, 95% CI, 0.06-0.37; P<0.001). Age at the time of surgery and surgical techniques were not associated with any difference in operative success (Table 3).
 

Table 3. Results of multivariable analysis of independent predictors for early morbidity and operative failure
 
Discussion
The conventional practice of keeping patients in hospital until urethral catheter removal after hypospadias surgery is well reflected from the first annual Surgical Outcome Monitoring and Improvement Programme Report in 2008/09 to the fifth report in 2012/13 issued by the Hong Kong Hospital Authority.10 11 12 13 14 The median LOS after hypospadias surgery performed in Hospital Authority hospitals ranged from 9 to 11 days from 2008 to 2013.10 11 12 13 14 It was a traditionally held belief that Hong Kong parents would not be sufficiently competent to provide proper wound care at home, and that surgical outcomes would be adversely affected if patients were discharged from hospital with the urethral catheter in situ. There was also concern that Hong Kong parents would not welcome the offer of early hospital discharge, given the reality that the actual costs billed to parents for in-patient service in Hospital Authority hospitals are relatively insignificant, compared with other parts of the world where medical insurance covers only very short in-patient care after hypospadias surgery. The present study was the first in Hong Kong to investigate the outcomes of hypospadias surgery after the introduction of an ERP. It is important to note that our findings do not reflect purely the effect of ERP but the effect of an NS model that features ERP implementation by a dedicated surgical team.
 
Our findings demonstrate that ERP can be applied effectively and safely to all children who undergo primary hypospadias repair, regardless of the severity and type of hypospadias. Since its introduction, we have offered ERP to 126 consecutive patients and none of the parents or caregivers have declined the offer. Only one patient discontinued ERP for social reasons, as that child was an institutionalised orphan. Penile wound care does not require special skills and involves only wound irrigation with normal saline or clean water a few times daily. Patients can also be bathed with the urethral catheters in situ. Adequate preoperative counselling and postoperative wound care demonstration by the same surgeons who performed the surgery is the key to promoting the acceptance of ERP among parents.
 
Almost 90% of our patients completed ERP successfully. Among those who failed to complete ERP, none had major adverse events that required surgical intervention and, overall, only 3.2% of patients required additional overnight stay. The median hospital stay of 2 days under the NS model was significantly shorter than the median of 10 days in our OS control cohort. In-patient services are precious resources in our health care system. A much shorter LOS after hypospadias surgery allows for better allocation of health care resources to other service areas in which in-patient care is more indicated.
 
More importantly, our findings suggest that ERP does not increase early morbidity after primary hypospadias repair. On the contrary, the NS model was the only factor that was found to independently predict a reduced risk of early morbidity. Our finding of an early morbidity rate of 5.6% in the NS model is in agreement with the 4.9% reported by a previous study in the United States.15 Our finding that most of the early morbidity in the OS model was wound-related and our observation that, in some of these patients, the wound swab grew Pseudomonas and extended spectrum beta-lactamase Escherichia coli raised the concern of possible hospital-acquired infection. While more evidence is needed to attribute the high early morbidity rate under the OS model solely to the prolonged hospital stay, it follows logically that avoiding unnecessary hospital stay is an effective way to prevent hospital-acquired infection if in-patient care does not give any additional benefits.
 
We found a better outcome after primary hypospadias repair under the NS versus OS model in both univariable and multivariable analyses. This study not only provides evidence that the implementation of ERP did not reduce operative success, but also demonstrates how our centre has responded to the international trend of concentrating hypospadias repairs among dedicated hypospadias surgeons.2 16 17 In recent years, there has been an international call to stop the practice of hypospadias repair by occasional surgeons. Proponents of this view hold that surgeons who perform hypospadias repair should be proficient in using various techniques to correct the full spectrum of hypospadias defects, from distal hypospadias to the most complex proximal type.17 18 The preoperative impression of the ectopic meatal position is not a reliable reflection of the severity of hypospadias, and many cases are found to be more complicated intra-operatively.19 Under the NS model, we abandoned our policy of allowing all paediatric surgical specialists to perform hypospadias surgery; instead, all hypospadias repairs were concentrated among the three specialists who subspecialised in paediatric urology.
 
We believe the improved operative success under the NS model is attributable to the establishment of the dedicated team, which has also introduced some technical modifications in the existing techniques.20 Our overall failure rate of 20.2% of patients requiring reoperation or re-intervention in the NS cohort is in agreement with the 18.1% reported by a national population-based study in the United Kingdom21 and the 24.1% reported by a regional tertiary centre in Europe.22 Both studies included primary repairs of all types of hypospadias performed by multiple techniques, such as those used in the present study.21 22 Previous studies have shown that centres that operate on more than 20 cases per year have a better operative success than those that operate less frequently,21 and surgeons who perform 20 primary repairs annually have reduced odds of failure compared with those who perform 10 per year.23 Although the minimum number of hypospadias repairs per year a surgeon must perform to be considered competent remains debatable, it is recommended that hypospadias repairs be performed by surgeons who perform a high volume of repairs and are intellectually interested in this subject, with continuous review of their own results.17 The current three-member team in our institution strikes a balance between surgical outcomes and other practical issues, such as stable staffing, expertise, training, and succession.
 
Proximal hypospadias has been known to be associated with a higher failure rate in primary repair and a higher reoperation rate than distal hypospadias.24 25 The most recent studies from major centres have unanimously suggested that the failure rate of primary repair of proximal hypospadias has actually been underreported in the literature.6 26 27 Our finding of increased odds of failure in primary repair of proximal hypospadias when compared with the distal type is in agreement with the current evidence. We did not find age at the time of surgery and surgical techniques to be independent predictors of repair failure, and our finding is in agreement with other studies.22
 
We acknowledge the limitations of the retrospective nature of our study and the lack of randomisation. Data are lacking on anatomical variations such as quality of urethral plate and glans size, which may have affected the surgical outcomes. Patients were not randomised by the type of recovery programme and the study participants were assigned to the two cohorts according to the service model at the time. Our results could have been confounded by the effect of accumulating experience in hypospadias surgery throughout the study period. Data were collected by investigators who were not blinded to the types of service models; therefore, there was potential bias in the data collection process, but inter-rater reliability was not examined. As the ERP was implemented at the same time as the establishment of the dedicated team, these two factors could not be analysed separately. Being the more recent cohort, the patients under the NS model had shorter follow-up duration than those under the OS model. However, our median follow-up duration of 20 months in the NS cohort compares favourably to that of many published studies.25
 
Despite these limitations, our findings demonstrate the safety and effectiveness of implementing ERP to primary hypospadias repair for the full spectrum of hypospadias severity. A dedicated surgical team may play an important role in the successful implementation of ERP and optimisation of surgical outcomes.
 
Author contributions
All authors have made substantial contributions to the concept of this study; acquisition of data; analysis or interpretation of data; drafting of the article; and critical revision for important intellectual content.
 
Funding/support
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
 
Declaration
All authors have no conflicts of interest to disclose. All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity.
 
Ethical approval
The study protocol was approved by the Joint Chinese University of Hong Kong–New Territories East Cluster Clinical Research Ethics Committee. The requirement for patient consent was waived by the ethics board.
 
References
1. Baskin LS, Ebbers MB. Hypospadias: anatomy, etiology, and technique. J Pediatr Surg 2006;41:463-72. Crossref
2. Steven L, Cherian A, Yankovic F, Mathur A, Kulkarni M, Cuckow P. Current practice in paediatric hypospadias surgery; a specialist survey. J Pediatr Urol 2013;9(6 Pt B):1126-30. Crossref
3. Wilkinson DJ, Farrelly P, Kenny SE. Outcomes in distal hypospadias: a systematic review of the Mathieu and tubularized incised plate repairs. J Pediatr Urol 2012;8:307-12. Crossref
4. Long CJ, Canning DA. Hypospadias: are we as good as we think when we correct proximal hypospadias. J Pediatr Urol 2016;12:196.e1-5. Crossref
5. Snodgrass WT, Bush N, Cost N. Tubularized incised plate hypospadias repair for distal hypospadias. J Pediatr Urol 2010;6:408-13. Crossref
6. Pippi Salle JL, Sayed S, Salle A, et al. Proximal hypospadias: a persistent challenge. Single institution outcome analysis of three surgical techniques over a 10-year period. J Pediatr Urol 2016;12:28.e1-7. Crossref
7. Pohl HG, Joyce GF, Wise M, Cilento BJ Jr. Cryptorchidism and hypospadias. J Urol 2007;177:1646-51. Crossref
8. Snodgrass W, Bush N. Tubularized incised plate proximal hypospadias repair: continued evolution and extended applications. J Pediatr Urol 2011;7:2-9. Crossref
9. McNamara ER, Schaeffer AJ, Logvinenko T, et al. Management of proximal hypospadias with 2-stage repair: 20-year experience. J Urol 2015;194:1080-5. Crossref
10. Surgical Outcomes Monitoring & Improvement Program (SOMIP) report. Volume One: July 2008-June 2009. Hospital Authority, Hong Kong SAR Government; 2010.
11. Surgical Outcomes Monitoring & Improvement Program (SOMIP) report. Volume Two: July 2009-June 2010. Hospital Authority, Hong Kong SAR Government; 2011.
12. Surgical Outcomes Monitoring & Improvement Program (SOMIP) report. Volume Three: July 2010-June 2011. Hospital Authority, Hong Kong SAR Government; 2012.
13. Surgical Outcomes Monitoring & Improvement Program (SOMIP) report. Volume Four: July 2011-June 2012. Hospital Authority, Hong Kong SAR Government; 2013.
14. Surgical Outcomes Monitoring & Improvement Program (SOMIP) report. Volume Five: July 2012-June 2013. Hospital Authority, Hong Kong SAR Government; 2014.
15. Meyer C, Sukumar S, Sood A, et al. Inpatient hypospadias care: trends and outcomes from the American nationwide inpatient sample. Korean J Urol 2015;56:594-600. Crossref
16. Springer A, Krois W, Horcher E. Trends in hypospadias surgery: results of a worldwide survey. Eur Urol 2011;60:1184-9. Crossref
17. Snodgrass W, Macedo A, Hoebeke P, Mouriquand PD. Hypospadias dilemmas: a round table. J Pediatr Urol 2011;7:145-57. Crossref
18. Malone P. Commentary to “A standardized classification of hypospadias”. J Pediatr Urol 2012;8:415. Crossref
19. Orkiszewski M. A standardized classification of hypospadias. J Pediatr Urol 2012;8:410-4. Crossref
20. Tam YH, Pang KK, Wong YS, et al. Improved outcomes after technical modifications in tubularized incised plate urethroplasty for mid-shaft and proximal hypospadias. Pediatr Surg Int 2016;32:1087-92. Crossref
21. Wilkinson DJ, Green PA, Beglinger S, et al. Hypospadias surgery in England: higher volume centres have lower complication rates. J Pediatr Urol 2017;13:481.e1-6. Crossref
22. Spinoit AF, Poelaert F, Van Praet C, Groen LA, Van Laecke E, Hoebeke P. Grade of hypospadias is the only factor predicting for re-intervention after primary hypospadias repair: a multivariate analysis from a cohort of 474 patients. J Pediatr Urol 2015;11:70.e1-6. Crossref
23. Lee OT, Durbin-Johnson B, Kurzrock EA. Predictors of secondary surgery after hypospadias repair: a population based analysis of 5,000 patients. J Urol 2013;190:251-5. Crossref
24. Castagnetti M, El-Ghoneimi A. Surgical management of primary severe hypospadias in children: systematic 20-year review. J Urol 2010;184:1469-74. Crossref
25. Pfistermuller KL, McArdle AJ, Cuckow PM. Meta-analysis of complication rates of the tubularized incised plate (TIP) repair. J Pediatr Urol 2015;11:54-9. Crossref
26. Stanasel I, Le HK, Bilgutay A, et al. Complications following staged hypospadias repair using transposed preputial skin flaps. J Urol 2015;194:512-6. Crossref
27. Long CJ, Chu DI, Tenney RW, et al. Intermediate-term followup of proximal hypospadias repair reveals high complication rate. J Urol 2017;197(3 Pt 2):852-8. Crossref

Outcomes of a pharmacist-led medication review programme for hospitalised elderly patients

Hong Kong Med J 2018 Apr;24(2):98–106 | Epub 9 Feb 2018
DOI: 10.12809/hkmj176871
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Outcomes of a pharmacist-led medication review programme for hospitalised elderly patients
Patrick KC Chiu, FRCP (Glasg), FHKAM (Medicine)1; Angela WK Lee, MPharm, RPharmS (Great Britain)2; Tammy YW See, MClinPharm, RPharmS (Great Britain)2; Felix HW Chan, FRCP (Edin, Glasg, Irel), FHKAM (Medicine)1
1 Geriatric Medical Unit, Grantham Hospital, Wong Chuk Hang, Hong Kong
2 Pharmacy, Grantham Hospital, Wong Chuk Hang, Hong Kong
 
Corresponding author: Dr Patrick KC Chiu (chiukc@ha.org.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Elderly patients are at risk of drug-related problems. This study aimed to determine whether a pharmacist-led medication review programme could reduce inappropriate medications and hospital readmissions among geriatric in-patients in Hong Kong.
 
Methods: This prospective controlled study was conducted in a geriatric unit of a regional hospital in Hong Kong. The study period was from December 2013 to September 2014. Two hundred and twelve patients were allocated to receive either routine care (104) or pharmacist intervention (108) that included medication reconciliation, medication review, and medication counselling. Medication appropriateness was assessed by a pharmacist using the Medication Appropriateness Index. Recommendations made by the pharmacist were communicated to physicians.
 
Results: At hospital admission, 51.9% of intervention and 58.7% of control patients had at least one inappropriate medication (P=0.319). Unintended discrepancy applied in 19.4% of intervention patients of which 90.7% were due to omissions. Following pharmacist recommendations, 60 of 93 medication reviews and 32 of 41 medication reconciliations (68.7%) were accepted by physicians and implemented. After the program and at discharge, the proportion of subjects with inappropriate medications in the intervention group was significantly lower than that in the control group (28.0% vs 56.4%; P<0.001). The unplanned hospital readmission rate 1 month after discharge was significantly lower in the intervention group than that in the control group (13.2% vs 29.1%; P=0.005). Overall, 98.0% of intervention subjects were satisfied with the programme. There were no differences in the length of hospital stay, number of emergency department visits, or mortality rate between the intervention and control groups.
 
Conclusions: A pharmacist-led medication review programme that was supported by geriatricians significantly reduced the number of inappropriate medications and unplanned hospital readmissions among geriatric in-patients.
 
 
New knowledge added by this study
  • This is the first prospective controlled study of the effect of a pharmacist-led medication review programme on medication use and health services utilisation among hospitalised Chinese elderly patients in Hong Kong.
  • The medication review programme led by a clinical pharmacist resulted in a substantial reduction in the use of inappropriate medications among hospitalised elderly patients and all-cause unscheduled readmissions at 1 month after hospital discharge.
Implications for clinical practice or policy
  • A pharmacist-led medication review programme is an important strategy that can enhance the safety and quality of prescription among elderly patients in hospital.
  • It is strongly recommended that these programmes be standardised and implemented in all medical and geriatric wards in Hong Kong.
 
 
Introduction
Elderly patients have multiple co-morbidities and they are consequently prone to multiple medication use. Inappropriate medication use is common among hospitalised older adults. The number of drugs taken is one of the important determinants of risk for receiving an inappropriate medication.1 There is a high prevalence of unnecessary drug use in frail older people. In one hospital study, 44% of patients were prescribed at least one unnecessary drug, with the most common reason being lack of indication.2 The most commonly prescribed unnecessary drug classes were gastrointestinal, central nervous system, and therapeutic nutrients/minerals.2 Appropriate use of drugs is particularly important in the frail older people who are especially at risk of adverse drug reactions.3 It has been shown that implementation of a clinical pharmacist service has a positive effect on medication use and health care service utilisation among hospitalised patients.4 5 A local study in a geriatric hospital demonstrated the effectiveness of a drug rationalisation programme with involvement of a clinical pharmacist in reducing the incidence of polypharmacy and inappropriate medications.6 Interacting with the health care team on patient rounds, interviewing patients, reconciling medications, and providing patient discharge counselling and follow-up all resulted in improved outcomes.7 It is for this reason that patient safety strategies encourage the use of medication reconciliation and clinical pharmacists in health care systems to reduce adverse drug events.8 9 10
 
There is not much information about the effectiveness of a medical review programme among hospitalised elderly patients in Hong Kong. Two recent local reports that examined the effects of a clinical pharmacist–led medication review on hospital readmissions showed conflicting results and did not specifically address elderly patients.11 12 We therefore conducted a prospective controlled study to investigate the effectiveness of a comprehensive pharmacist intervention on medication use and hospital readmission among a group of geriatric in-patients in Hong Kong.
 
Methods
This prospective controlled study was conducted in the geriatric unit of a regional hospital in Hong Kong. The unit has 38 in-patient beds and admits older people aged 65 years or above who are transferred from an acute hospital after initial stabilisation of medical and/or geriatric problems. The unit admits more than 1000 patients per year and provides medical treatment, rehabilitation, and discharge planning services by a multidisciplinary team composed of a geriatrician, residents, nurses, physiotherapists, occupational therapists, and medical social workers. All patients admitted to the unit during December 2013 to September 2014 were included. Patients were excluded if they refused to participate, were terminally ill with a life expectancy of less than 3 months, or if they had already received pharmacist intervention in another hospital prior to this admission. Eligible subjects were assigned to an intervention or control group according to the admission day of the week. Those who were admitted on Monday through Thursday were assigned to the intervention group, and those admitted on Friday through Sunday to the control group. This arrangement was to ensure that pharmacist intervention could be initiated promptly within 48 hours of patient admission. Demographic data, functional status, co-morbidities, and number of drugs on admission were collected at admission.
 
The intervention was conducted by a pharmacist who was present in the unit from Monday to Saturday. The pharmacist provided pharmaceutical care from admission to discharge. Interventions performed by the pharmacist consisted of the following:
 
(1) Medication reconciliation on admission to identify unintended discrepancies between medications prescribed on admission and the usual medications prior to admission—sources to assist medication reconciliation included: electronic patient record; patient’s ward case notes; interview with patient and/or patient carer. The number and type of unidentified discrepancies were recorded.
 
(2) Medication review to check for medication appropriateness on admission and also at discharge—medication appropriateness was assessed by the Medication Appropriateness Index (MAI).13 There are 10 criteria to assess for appropriateness, namely indication, effectiveness, dosage, correct direction, practical direction, drug-drug interaction, drug-disease interaction, duplication, duration, and expense. For a drug item coded as ‘inappropriate’, relative weights for each criterion would apply. A sum of MAI scores could then be calculated to give a score ranging from 0 to 18. The higher the score, the more inappropriate the drug. Recommendations from the pharmacist after the reconciliation and medication review in the intervention group were then communicated to the in-charge doctor via a written note in the medical records. Recommendations were reinforced verbally if deemed appropriate by the pharmacist.
 
(3) Pharmacist counselling on admission and also at discharge was provided to improve patients’ drug knowledge to ensure proper use of drugs and compliance after discharge. A discharge counselling service was provided for all patients who returned home. The counselling included any changes to drug regimen; an explanation of each drug’s indication; any untoward effects that might occur and when to seek medical advice; and drug storage and administration instructions. To ensure patient understanding, written information such as patient information leaflets were given to patients and their carers to remind them of the correct drug regimen. If the patient was illiterate, a simple diagram was drawn on drug labels to demonstrate the time of day and number of tablets to be taken. If necessary, individualised pictorial schedules with drug images and administration instructions could be produced for patients and their carers. The assistance of a family member or external care services such as a community nurse was enlisted if the patient was found to have compliance issues.
 
The control group received routine clinical services. Records of the control group were retrospectively reviewed by the pharmacist after patient discharge to check for medication appropriateness on admission and also at discharge. The primary outcome measure was the appropriateness of prescription as measured by the MAI. Secondary outcomes included the acceptance rate by physicians, number of subjects with unintended discrepancies, patient satisfaction with the programme (for those home-living only), and unplanned hospitalisations 1 and 3 months after discharge.
 
A sample size of 98 patients per group was required to have 85% power to detect an effect size of 0.9 on the MAI. Our sample size was finally set at 210 patients to account for loss of participants due to dropout or death. This sample size was comparable with a study by Spinewine et al14 in which MAI was used as one of the tools to assess appropriateness of prescribing in an acute geriatric care unit and 203 patients were recruited. Our study included 212 patients and was expected to have adequate statistical power to detect differences between groups. Descriptive analyses were performed and included the number and types of unintended discrepancies, MAI score upon admission and at discharge, types of drug-related problems, number of interventions made by pharmacists, and number of recommendations accepted by doctors and implemented. Outcomes for the two groups before and after the programme were compared using the t test and Chi squared test. The Statistical Package for the Social Sciences (Windows version 17.0; SPSS Inc, Chicago [IL], United States) was used and a P value of <0.05 was regarded as statistically significant. The study was approved by the Cluster Research Ethics Committee of the Hospital Authority Hong Kong West Cluster. Written consent was obtained from the patient or their caregiver. The absence of pharmacist intervention in the control group was considered acceptable because a pharmacy service was not a part of routine care at the institution.
 
Results
Figure 1 summarises the patient flow from recruitment to hospital discharge, the components of the medication review programme, and the planned outcome measures. A total of 212 patients were recruited. There were 108 subjects in the intervention group and 104 in the control group (Fig 2). There were no statistical differences in the baseline characteristics of patients (Table 1).
 

Figure 1. Patient flow of the medication review programme from patient recruitment to patient discharge
 

Figure 2. Patient flow diagram
 

Table 1. Baseline demographics and characteristics of the intervention and control groups
 
Appropriateness of prescription
On admission, 51.9% (56/108) of the intervention group and 58.7% (61/104) of the control group had at least one drug classified as inappropriate (P=0.319). Overall, 1996 drug items were reviewed by a pharmacist on admission of which 1020 were from the intervention group and 976 from the control group. Among them, 9.3% and 11.1% of the drugs, respectively, were classified as inappropriate (P=0.282). In the intervention group, 93 recommendations were made by the pharmacist of which 60 (64.5%) were accepted by the physicians and implemented. The mean (standard deviation) MAI score per patient was 2.19 (3.03) in the intervention group and 2.28 (3.09) in the control group (P=0.841). The mean MAI score per drug was 0.23 (0.30) in the intervention group and 0.25 (0.31) in the control group (P=0.628) [Table 2].
 
After the program and at discharge, the proportion of subjects with inappropriate medications in the intervention group was significantly lower than that in the control group (28.0% vs 56.4%; P<0.001). Among the 1999 drug items reviewed by the pharmacist on patient discharge, 3.5% (37 of 1048) of the intervention group and 9.7% (92 of 951) of the control group were classified as inappropriate (P<0.001). The intervention group also had a significantly lower MAI score per patient (0.95 (2.02) vs 2.02 (2.53); P<0.001) and MAI score per drug (0.09 (0.17) vs 0.24 (0.30); P<0.001) implying a significant reduction in medication inappropriateness after the pharmacist medication review (Table 2).
 

Table 2. A comparison of the number of subjects with inappropriate medications and the MAI scores between the intervention and control groups on admission and at discharge
 
Types of inappropriateness according to the MAI in the two groups are illustrated in Figure 3. In both the intervention and control groups, the common causes were indication, effectiveness, dosage, practical direction, duration, and expense. After the programme, there was a significant reduction in the number of these drug-related problems in the intervention group.
 

Figure 3. Comparison of the types of inappropriate medication use between the intervention and control groups on admission and at discharge (paired t test)
 
Unintended discrepancy of medications
Among the 108 subjects in the intervention group, 19.4% had at least one unintended discrepancy in medications, involving a total of 43 drug factors. The majority (90.7%) of these factors were omission of drugs, and 4.6% were due to inappropriate dosages. Of all the drug factors involved, 69.8% involved prescribed drugs from hospitals, 25.6% were from a private clinic, and 4.6% were over-the-counter drugs. Overall, 41 recommendations were made, of which 32 (78.0%) were accepted by physicians and implemented.
 
Patient satisfaction
Contact was made with 50 of the 90 non-institutionalised subjects 1 month after discharge to assess satisfaction with the programme. Of those contacted, 98.0% were satisfied with the programme and only one (2.0%) patient expressed a neutral opinion.
 
Impact on health care services utilisation and mortality
There were no statistical differences in the length of hospital stay, in-patient mortality, or mortality at 1 month or 3 months after discharge. There was also no statistical difference in the number of attendances at the accident and emergency department 1 month or 3 months after discharge or in the unplanned hospital readmission rate at 3 months after discharge. The unplanned hospital readmission rate 1 month after discharge, however, was significantly lower in the intervention group than that in the control group (13.2% vs 29.1%; P=0.005) [Table 3].
 

Table 3. Comparison of the impact on health services utilisation and mortality between the intervention and control groups
 
Discussion
To the best of our knowledge, this is the first local prospective controlled study to investigate the effectiveness of a pharmacist-led medication review programme on medication appropriateness and clinical outcomes among geriatric in-patients in Hong Kong. This study has demonstrated superior outcomes that favour a pharmacist-led intervention. There was a substantial reduction in the use of inappropriate medications and all-cause unscheduled readmissions 1 month after hospital discharge. Nonetheless, analysis of length of hospital stay, number of all-cause emergency department visits, and mortality rate favoured neither the intervention nor the usual pharmacist care.
 
This study showed that one in five geriatric in-patients had an unintended medication discrepancy on admission. This figure was slightly higher than that found in a group of 3317 hospitalised medical patients (13%) over 1 year in an acute hospital in Hong Kong by Kwok et al.15 Subjects in our study were all elderly patients, whereas those in Kwok et al’s study were adults of all ages. Elderly subjects tend to have polypharmacy and thus are more vulnerable to unintended medication discrepancy when they move in and out of hospital or are transferred to another health care unit for further care. Unjustifiable medication discrepancies account for more than half of the medication errors that occur during transition of care and up to one third have the potential to cause harm.16 17 This does not bode well for our elderly patients with multiple co-morbidities.
 
Up to 30% of the discrepancies in our study involved medications that had been prescribed by private practitioners or purchased over-the-counter. Unlike medications prescribed from the Hospital Authority, these medications might be overlooked unless the admitting doctor specifically asks for a detailed drug history from the patient. Knowing the medication history and hence resuming these medications are important if new health problems are to be prevented. Pharmacist-led medication reconciliation is therefore a critical process that can enhance patient medication safety by compiling a complete and accurate medication list for patients in hospital.
 
This study revealed that more than half of the subjects (55.2%) received inappropriate medications. The majority of reasons for inappropriateness related to effectiveness, dosage, practical directions, and expense as reflected by the MAI. The inappropriate dosage and the questionable effectiveness might lead to not only failed pharmacological effects, but also potentially an untoward adverse drug reaction, especially in elderly individuals with pre-existing organ dysfunction.18 When a medication is not used according to the practical directions, it may lead to patient non-compliance. Optimising outcomes while reducing costs are the keys for medication management in today’s health care environment.19 Often there are several choices of drugs available to treat a disease or health condition and some are more expensive than others. The involvement of a ward-based pharmacist to review medication can enhance the use of appropriate medications in hospitalised patients and potentially reduce medication costs.
 
Following the medication review (60/93) and medication reconciliation (32/41), there were 92 recommendations that were accepted by the physician. The overall acceptance rate by physicians and the implementation of pharmacist recommendations in our study was 68.7% (92/134). This figure ranged from 39% to 100% in a previous systematic review of 32 studies.4 Our study did not specifically record recommendations accepted by physicians but not implemented. Hence the acceptance rate in our study may be underestimated. Nevertheless, the clinical pharmacist is encouraged to discuss the medication-related problems in person with the physician as well as contacting the patient in order to enhance the implementation rate.4
 
Pharmacy departments within the public hospital system in Hong Kong have strived to implement the aforementioned patient safety strategies in different specialties. Nonetheless, this is not a standard practice simply because of insufficient pharmacist staffing resources. In some hospitals, a pharmacist service is provided in wards, but this does not apply in all cases and is not standardised. Experience of a pharmacist-led medication reconciliation service from an acute teaching hospital in Hong Kong showed promising results over a 1-year trial run with high acceptance and recognition by other health care professionals.16 It is hoped that the clinical role of clinical pharmacists in patient medication management in hospitals can be encouraged. Another local study has demonstrated a positive impact on medication safety in patients with diabetes by pharmacists’ intervention in collaboration with a multidisciplinary team.20 The feasibility of incorporating a pharmacist as part of a multidisciplinary team of health care professionals must be explored in geriatric wards in Hong Kong. With increasing life expectancy, the expanding elderly population will equate to an increase in morbidity and mortality owing to drug-related problems where the need for trained health care professionals to perform medication reviews will be in even greater demand. To enhance safe drug use with limited resources, a systematic approach must be adopted to cover all aspects that affect drug therapy.
 
In terms of the impact on health care services utilisation, a recent systematic review and meta-analysis of the effectiveness of a pharmacist-led medication reconciliation programme revealed a substantial reduction in the rate of all-cause readmissions (19%), all-cause emergency department visits (28%), and adverse drug event–related hospital visits (67%).21 Our study revealed a significant reduction in unplanned hospital admissions (all-cause admission) at 1 month but not at 3 months. This implication might be due to an inadequate sample size to show the difference at 3 months. Alternatively, it might also imply that pharmacist intervention needs to be continued after patient discharge in order to have a sustained effect. This is supported by a study by Schnipper et al22 in which pharmacist intervention after patient discharge was associated with a lower rate of preventable adverse drug events 30 days after hospital discharge.
 
During the pharmacist review, cost-effectiveness of drug use was assessed through MAI. Alternative options such as less-expensive formulations or drugs but of the same quality would be recommended to the doctor in-charge. This was a means of encouraging cost-effective use of drugs in a hospital. Furthermore, the reduction in unscheduled hospital readmissions in the intervention group implies a potential saving in hospital costs. Although a detailed analysis was not performed in this study, a rough estimation is that nearly HK$2 million may be saved annually as a result of lower drug costs and reduced hospital admissions, even after considering the cost of employing a pharmacist. The estimation was based on the following calculations. The estimated drug saving as a result of a switch to a more cost-effective alternative was HK$7500 among the 108 patients in the intervention group. This can be projected to a saving of about HK$69 500 in a unit that admits 1000 patients annually. In the current study, there were 16 fewer readmissions in the intervention group compared with the control group. Assuming a daily cost of an acute hospital bed is HK$4680 and the mean length of hospital stay is 3 days, this equates to a potential saving of about HK$2 080 000 per year in a unit that admits 1000 patients annually. If it is assumed that a pharmacist spends 30 minutes for each patient at an hourly salary of HK$433, the projected cost of an additional pharmacist to run the intervention would be HK$216 500 per year. The net annual saving of this programme to serve 1000 patients in this unit would thus still be close to HK$2 million.
 
This study had several limitations. First, a substantial proportion (35%) of all the admitted patients were not screened by a pharmacist on admission. This was due to a temporary pause in subject recruitment when patients were admitted on public holidays, when the pharmacist was on holiday or when she had to relieve another pharmacist in the hospital. Moreover, a substantial proportion (44%) of eligible subjects were not included owing to no consent or refusal. These factors might have resulted in selection or self-selection bias. Second, subject recruitment was not randomised, but done according to the day of admission. This might be a source of bias. Nevertheless, this would have minimal influence on the outcomes, as the baseline characteristics of the intervention and control groups were comparable. Third, the pharmacist who carried out the review and data extraction was not blinded to the study hypothesis and the group status of the subjects. This could potentially lead to information bias, although this might be partially offset by the fact that the majority of the information or data on the outcome measures were taken with reference to a well-established and validated tool. Fourth, this study was performed in a single unit, so generalisation to other settings is not possible. Fifth, MAI is an implicit tool that is subjective. A single pharmacist as the rater might limit the reliability of the assessment results. Nevertheless, the more explicit tools of STOPP/START criteria23 had also been referred to in addition to the MAI during the review process. Sixth, this study only addressed appropriateness of drug use, whereas underuse of drugs was not investigated. Finally, this study could not conclude a causal relationship between the reduction in inappropriate medications and the reduction in unscheduled hospital readmissions because there were several components in the intervention that included a medication review, medication reconciliation, and discharge counselling. It is difficult to be certain which of these components alone or in combination gave rise to the positive outcome of this study.
 
On the other hand, there were several strengths in this study. This was the first prospective controlled study of the effect of a pharmacist-led medication review programme on medication use and health services utilisation involving over 200 Chinese elderly patients in Hong Kong. Second, a well-validated tool was used to assess medication appropriateness. The use of the MAI tool focused on the patient and the entire medication regimen. Third, there was a comprehensive review of outcomes including quality of prescribing, health services utilisation, mortality, length of hospital stay, and patient satisfaction.
 
Conclusions
This study supported the role of a hospital-based clinical pharmacist to enhance appropriate medication use among elderly Chinese in-patients. A systematic medication review programme in a geriatric unit resulted in a reduced number of drug omissions and fewer inappropriate medications. The service provided by the clinical pharmacist and supported by geriatricians was welcomed by patients and their carers. Together with the potential to reduce hospital readmissions and their associated cost, it is hoped that an in-hospital pharmacist-led medication review programme can be recognised as one of the important strategies to enhance the safety and quality of prescription among elderly patients in hospitals. It is strongly recommended that these programmes be standardised and implemented in all medical and geriatric wards in Hong Kong. Future studies should recruit a larger sample size in a randomised controlled design in other geriatric hospital settings to reiterate our findings. Furthermore, these studies might consider including adverse drug event–related hospital visits as one of the outcome measures.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Onder G, Landi F, Cesari M, Gambassi G, Carbonin P, Bernabei R; Investigators of the GIFA Study. Inappropriate medication use among hospitalized older adults in Italy: results from the Italian Group of Pharmacoepidemiology in the Elderly. Eur J Clin Pharmacol 2003;59:157-62. Crossref
2. Hajjar ER, Hanlon JT, Sloane RJ, et al. Unnecessary drug use in frail older people at hospital discharge. J Am Geriatr Soc 2005;53:1518-23. Crossref
3. Routledge PA, O’Mahony MS, Woodhouse KW. Adverse drug reactions in elderly patients. Br J Clin Pharmacol 2004;57:121-6. Crossref
4. Graabaek T, Kjeldsen LJ. Medication reviews by clinical pharmacists at hospitals lead to improved patient outcomes: a systematic review. Basic Clin Pharmacol Toxicol 2013;112:359-73. Crossref
5. Gillespie U, Alassaad A, Henrohn D, et al. A comprehensive pharmacist intervention to reduce morbidity in patients 80 years or older: a randomized controlled trial. Arch Intern Med 2009;169:894-900. Crossref
6. Chan FH, Pei CK, Chiu KC, Tsang EK. Strategies against polypharmacy and inappropriate medication—are they effective? Australas J Ageing 2001;20:85-9. Crossref
7. Kaboli PJ, Hoth AB, McClimon BJ, Schnipper JL. Clinical pharmacists and inpatient medical care: a systematic review. Arch Intern Med 2006;166:955-64. Crossref
8. The ACHS EQuIP5 (5th edition of the ACHS Evaluation and Quality Improvement Program) clinical standard 1.5, criterion 1.5.1.: Medication are managed to ensure safe and effective consumer/patient outcomes. Sydney: The Australian Council on Health Care Standards; 2010.
9. Medication reconciliation. Patient Safety Network. Agency for Healthcare Research and Quality. US Department of Health & Human Services. Available from: http://psnet.ahrq.gov/primer.aspx?primerID=1. Accessed 11 Jun 2017.
10. Gurwitz J, Monane M, Monane S, Avorn J. Polypharmacy. In: Morris JN, Lipsitz LA, Murphy K, Bellville-Taylor P, editors. Quality care in the nursing home. St. Louis, MO: Mosby-Year Book; 1997: 13-25.
11. Wong CY, Lee TO, Lam MP. Pharmacist discharge intervention programme to reduce unplanned hospital use in patients with polypharmacy. Hong Kong Pharm J 2017;24(Suppl 1):S18.
12. Chan HH. To reduce avoidable readmission of patients who are categorized as high risk by 30-day hospital readmission model at medical ward of United Christian Hospital through medication reconciliation and discharge counseling. Hong Kong Pharm J 2017;24(Suppl 1):S21.
13. Hanlon JT, Schmader KE, Samsa GP, et al. A method for assessing drug therapy appropriateness. J Clin Epidemiol 1992;45:1045-51. Crossref
14. Spinewine A, Swine C, Dhillon S, et al. Effect of a collaborative approach on the quality of prescribing for geriatric inpatients: a randomized, controlled trial. J Am Geriatr Soc 2007;55:658-65. Crossref
15. Kwok CC, Mak WM, Chui CM. Implementational experience of medical reconciliation in Queen Mary Hospital. Hong Kong Pharm J 2009;16:50-2.
16. Rozich JD, Howard RJ, Justeson JM, Macken PD, Lindsay ME, Resar RK. Standardization as a mechanism to improve safety in health care. Jt Comm J Qual Saf 2004;30:5-14. Crossref
17. Cornish PL, Knowles SR, Marchesano R, et al. Unintended medication discrepancies at the time of hospital admission. Arch Intern Med 2005;165:424-9. Crossref
18. Cameron KA. Caregivers’ guide to medications and aging. National Center on Caregiving, Family Caregiver Alliance 2004. Available from: https://www.caregiver.org/caregiver%CA%BCs-guide-medications-and-aging. Accessed 11 Jun 2017.
19. Splawski J, Minger H. Value of the pharmacist in the medication reconciliation process. P T 2016;41:176-8.
20. Chung AY, Anand S, Wong IC, et al. Improving medication safety and diabetes management in Hong Kong: a multidisciplinary approach. Hong Kong Med J 2017;23:158-67. Crossref
21. Mekonnen AB, McLachlan AJ, Brien JA. Effectiveness of pharmacist-led medication reconciliation programmes on clinical outcomes at hospital transitions: a systematic review and meta-analysis. BMJ Open 2016;6:e010003. Crossref
22. Schnipper JL, Kirwin JL, Cotugno MC, et al. Role of pharmacist counseling in preventing adverse drug events after hospitalization. Arch Intern Med 2006;166:565-71. Crossref
23. Lam MP, Cheung BM. The use of STOPP/START criteria as a screening tool for assessing the appropriateness of medications in the elderly population. Expert Rev Clin Pharmacol 2012;5:187-97. Crossref

Intra-operative periarticular multimodal injection in total knee arthroplasty: a local hospital experience in Hong Kong

Hong Kong Med J 2018 Apr;24(2):145–51 | Epub 14 Mar 2018
DOI: 10.12809/hkmj176804
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Intra-operative periarticular multimodal injection in total knee arthroplasty: a local hospital experience in Hong Kong
Jason CH Fan, FHKAM (Orthopaedic Surgery)
Department of Orthopaedics and Traumatology, Alice Ho Miu Ling Nethersole Hospital, Tai Po, Hong Kong
 
Corresponding author: Dr Jason CH Fan (fchjason@gmail.com)
 
 Full paper in PDF
 
Abstract
Introduction: Data from a local report revealed the superior outcome of regional anaesthesia and analgesia compared with general anaesthesia and intravenous patient-controlled analgesia in total knee arthroplasty. This retrospective study aimed to assess the efficacy of intra-operative periarticular multimodal injection in improving postoperative pain and reducing morphine consumption with patient-controlled analgesia after total knee arthroplasty in patients with knee osteoarthritis.
 
Methods: From July 2005 to May 2009, 213 total knee arthroplasties without intra-operative periarticular multimodal injection (control group) were performed at a local hospital. From June 2009 to December 2012, 185 total knee arthroplasties were performed with intra-operative periarticular multimodal injection (cocktail group). The inclusion criteria were osteoarthritis of the knee, single method of anaesthesia (general or neuraxial), simple total knee arthroplasty without any metal augmentation or constraint, and postoperative patient-controlled analgesia. Postoperative patient-controlled morphine doses were compared.
 
Results: A total of 152 total knee arthroplasties were recruited to the cocktail group, and 89 to the control group. Duration of tourniquet application and preoperative knee score did not significantly correlate with morphine consumption by patient-controlled analgesia. Multimodal injection significantly decreased such consumption for 36 h. When injection was separately analysed for general and neuraxial anaesthesia, the effect lasted for 42 h and 24 h, respectively.
 
Conclusion: Intra-operative periarticular multimodal injection decreased morphine consumption for up to 42 h postoperatively.
 
 
New knowledge added by this study
  • Intra-operative periarticular multimodal injection in total knee arthroplasty could decrease parenteral morphine consumption for up to 42 hours.
Implications for clinical practice or policy
  • Intra-operative periarticular multimodal injection should be adopted as a standard local practice for postoperative pain control. This practice may be extended to operations other than total knee arthroplasty.
 
 
Introduction
Postoperative pain following total knee arthroplasty (TKA) is reported to be severe in approximately 60% of patients and moderate in approximately 30%.1 It is associated with arthrofibrosis and diminished range of motion.2 3 Good pain relief is important for rehabilitation following TKA.4 Many modes of perioperative and postoperative analgesia are available, and involve various combinations of systemic and regional analgesia. Intra-operative periarticular multimodal drug injection has been well documented as an excellent method to alleviate postoperative pain following TKA.5 6 7 Nonetheless, a previous retrospective study5 and a randomised trial6 that analysed two different groups of patients with multiple diagnoses and multiple anaesthetic methods revealed that the effect of periarticular injection might have been affected by different causes of end-stage arthritis leading to TKA. Different anaesthetic methods could also have affected patients’ perception of pain and parenteral morphine consumption.
 
In 2006, Chu et al8 reported the superior outcome of regional anaesthesia and regionally delivered analgesia compared with general anaesthesia (GA) and intravenous patient-controlled analgesia (PCA) in TKA at the Alice Ho Miu Ling Nethersole Hospital (AHNH). Since June 2009, intra-operative periarticular multimodal injection (IPMI) consisting of an opioid (morphine), a long-acting local anaesthetic (levobupivacaine) and epinephrine, has been administered by surgeons to control postoperative pain following TKA. This retrospective cohort study analysed the efficacy of IPMI in TKA and also its effect following different types of anaesthesia.
 
Methods
Perioperative pain management
Before June 2009, postoperative pain following primary TKA was managed by a combination of parenteral and oral analgesia. The anaesthetist determined the choice of parenteral analgesia that included regular or as-required subcutaneous morphine injection, PCA with intravenous morphine injection, or epidural analgesia (EpA). Oral paracetamol 1 g every 6 h was prescribed to all patients from day 1 to 3. Since June 2009, IPMI has been routinely added, and comprises 20 mL of 0.5% levobupivacaine, 1 mL of 5 mg/mL morphine, 2 mL of 1:10000 adrenaline, and 17 mL of normal saline. In this study, half of this 40-mL mixture was injected into the posterior capsule, collaterals, and quadriceps incision before implantation of the prosthesis. The other half was injected into the subcutaneous tissue after suturing of the arthrotomy. All patients with PCA were assessed hourly for the first 24 h to monitor vital signs, pain score, and patient-controlled analgesia morphine consumption (PCAMC), and thereafter every 6 h for 2 more days.
 
Patient selection
From July 2005 to May 2009, 213 TKAs without IPMI (control group) were performed at AHNH. They included 196 knees with osteoarthritis (OA) and 17 knees with rheumatoid arthritis. From June 2009 to December 2012, 185 TKAs were performed with IPMI (cocktail group). There were 175 OA knees, nine rheumatoid arthritis knees, and one Charcot knee.
 
All TKAs were performed through an anterior midline incision and medial parapatellar arthrotomy with tourniquet pressure of 300 mm Hg. A cemented posterior stabilised model was used in all cases except for two cases in the control group and nine cases in the cocktail group where a semi-constrained TKA was performed. All operations were performed under GA or neuraxial anaesthesia (NeA) that was either combined spinal epidural or spinal anaesthesia. Four TKAs in the cocktail group and four in the control group were performed with combined GA and NeA. A closed-suction surgical drain was inserted and was routinely removed on postoperative day 2.
 
For postoperative pain control in the control group, PCA was used in 112 TKAs, EpA in 66 TKAs, and subcutaneous morphine injections in 10 TKAs. A 4-point pain scale was completed by a pain nurse to assess pain in 189 PCA patients before October 2008 and a 10-point pain scale used in 23 PCA patients thereafter. In the cocktail group, 152 TKAs were managed with PCA, three with EpA, and three with subcutaneous morphine injections. Pain in all PCA patients was assessed by a 10-point pain scale.
 
The inclusion criteria for this study were OA of the knee, single method of anaesthesia of either GA or NeA, simple TKA without any metal augmentation or constraint, and postoperative PCA. The patients in the control group who were assessed by the 10-point pain scale were excluded to ensure a common pain assessment tool for each group.
 
Method of data retrieval, analysis, and study hypothesis
This was a retrospective cohort observational study carried out in accordance with the principles outlined in the Declaration of Helsinki. Informed patient consent was not required because it was a record-based study that revealed no individual identities or sensitive individual information. The medical records and electronic patient records were traced and the necessary data—including demographic data, TKA model and anaesthetic method, first 72-hour pain score and morphine consumption, and postoperative complications—were entered into an electronic file by a single member of staff blinded to the study hypothesis. The accuracy of the data was selectively double-checked by the author. To enable comparison, pain score was divided by 4 when the 4-point scale was used and by 10 for the 10-point scale. Statistical Package for the Social Sciences (Windows version 13.0; SPSS Inc, Chicago [IL], United States) was used for analysis. The null hypothesis was that IPMI would not alleviate postoperative pain and would not reduce PCAMC. The Chi squared test and two-tailed independent t test were used to analyse categorical and continuous data, respectively. The Pearson correlation test was used to detect any relationship between cumulative PCAMC and tourniquet time, and between PCAMC and preoperative knee score. Statistical significance was set at P<0.05.
 
Results
Perioperative variables
A total of 152 knees (134 patients) in the cocktail group and 89 knees (76 patients) in the control group were recruited (Fig 1). Table 1 shows the demographic data and clinical characteristics of patients, and Table 2 shows the models of primary TKAs and anaesthetic methods. There was no statistically significant difference in age, sex, the side operated on, and mean preoperative knee score or function score between the cocktail and control groups. Tourniquet time was significantly longer in the control group (P<0.05). There was no correlation between tourniquet time and PCAMC for any postoperative period (all correlation coefficients <0.1 and P>0.05). This indicated that tourniquet time was not confounding. Preoperative knee score was not correlated with PCAMC (all correlation coefficients <0.2 and P>0.05). Comparison of the number of Press Fit Condylar Sigma and non–Press Fit Condylar models between the two groups revealed a statistical significance (P<0.001). However, all these models substitute for the posterior cruciate ligament and have a similar design. They were all used in primary simple TKA, and model type would not have caused any difference in early postoperative pain perception.
 

Figure 1. Knee recruitment in the control group and cocktail group
 

Table 1. Patient and clinical characteristics, by study group
 

Table 2. Total knee arthroplasty model and anaesthesia, by study group
 
Cumulative patient-controlled analgesia morphine consumption
The mean cumulative PCAMC in both the cocktail and control groups increased gradually until 72 h postoperatively (Fig 2). The difference between the two groups reached statistical significance in the first 36 h. When effects of GA and NeA were reviewed separately, significantly less PCA morphine was required in the cocktail group than in the control group for the first 42 h (after GA) and 24 h (after NeA).
 

Figure 2. Postoperative morphine consumption by patient-controlled analgesia after total knee arthroplasty
 
Pain scale and complication
Figure 3 shows a decreasing severity of pain for both groups in the initial 72 h after surgery. There was no statistically significant difference between groups when TKA was performed under GA. In patients who underwent TKA under NeA, patients in the control group had a lower pain scale score by 0.1 at 12 h and from 24 to 48 h compared with the cocktail group, although this was gradually reversed up to 72 h. There were no adverse effects or complications as a result of IPMI.
 

Figure 3. Postoperative pain scale score after total knee arthroplasty
 
Discussion
Severe pain following TKA may be related to bone or soft tissue trauma or hyperperfusion following tourniquet release.6 Surgical difficulty in TKA has also been found to be related to postoperative pain9 and related to bone loss, severe deformity, flexion contracture, and poor range, all of which contribute to a low preoperative knee score. Nonetheless, in this study, the duration of tourniquet application was not significantly correlated with morphine consumption; and preoperative knee score was not correlated with PCAMC.
 
Pain management for TKA should start preoperatively and intra-operatively. The preemptive use of analgesia has been shown to prevent central sensitisation and improve postoperative pain control.10 11 12 Busch et al6 conducted a randomised trial of periarticular multimodal drug injection of ropivacaine, ketorolac, epimorphine, and epinephrine in 64 TKA patients. They reported significantly lower pain scores, increased patient satisfaction scores, and decreased requirement for PCA in the first 24 hours after surgery. In another randomised trial of periarticular injection of bupivacaine, fentanyl, and methylprednisolone in either side of bilateral TKAs in 40 patients, pain scores were significantly lower, and active knee flexion ranges were greater until the fourth week after surgery.13 Maheshwari et al7 emphasised the importance of periarticular injection in multimodal pain management following TKA at the Ranawat Orthopaedic Center, United States, and PCA was no longer used because of the high rates of systemic opioid side-effects.
 
The AHNH includes morphine in multimodal injections because opioid receptors are present in peripheral inflamed tissue.14 15 They are expressed within hours of surgical trauma and are thought to be responsible for afferent sensory input to the central nervous system.16 17 The injection also includes levobupivacaine, which is pharmacokinetically similar to bupivacaine. It is a pure left-isomer and has less cardiac and central nervous system toxicity.18 Corticosteroid was not added to the injection, although studies19 20 have shown that methylprednisolone in periarticular injections in total joint surgeries caused no delayed wound healing or wound infection. Mullaji et al13 advocated cautious use of steroid for fear of increasing the risk of surgical site infection in patients who (1) had prior open surgical procedures, (2) were undergoing revision TKA, (3) had poor nutritional status, (4) were immunocompromised, (5) were rheumatoid, or (6) were diabetic. In the current study, periarticular injection of a specific mixture decreased PCAMC for up to 42 hours. In 2013, Andersen et al21 advocated the addition of ketorolac during local infiltration analgesia. They prepared the medication by mixing 150 mL of ropivacaine 2 mg/mL with 1 mL of ketorolac 30 mg/mL; to 100 mL of this mixture was added 0.5 mL of epinephrine 1 mg/mL. The mixture containing epinephrine was injected into the posterior capsule and around the prosthesis, and the 50 mL without epinephrine was injected into the fascia and subcutis. An intra-articular catheter was left in place to enable eight postoperative bolus injections of analgesic without epinephrine. It was found that ketorolac successfully reduced morphine consumption, pain intensity, and length of hospital stay.21 At the AHNH, 1 mL of ketorolac 30 mg/mL has been added to IPMI since July 2014 to provide local anti-inflammatory action and enhance the analgesic effect.
 
Regional anaesthesia is the preferred method.7 8 The previous randomised trials of multimodal drug injection in TKA involved a mixed group of GA and regional anaesthesia,6 or excluded the samples of GA.13 Randomisation of anaesthesia in clinical trials is unethical because of the obvious benefit of regional anaesthesia that avoids central nervous system depression and prevents deep vein thrombosis following TKA.22 A retrospective study stratifying different types of anaesthesia is therefore the preferred method, as in the current study. The present study revealed that IPMI in TKA under NeA could significantly decrease PCAMC for 24 hours.
 
A concordant finding could not be obtained between the effect of IPMI on PCAMC and subjective pain scale. It is possible that the greater use of PCA morphine in the control group in earlier years explained the lower postoperative pain scores. Nonetheless, this could not explain the absence of this phenomenon in the GA subgroup. Rather, it may be explained by the secular change in patient expectations. To many patients early on, TKA was well-known to be associated with a high level of pain. They may have therefore used more PCA morphine. The level of perceived pain was then less than expected with a consequent lower pain score. With increasing popularity of TKA and knowledge of IPMI, patients may have been overly optimistic about the outcome. The 4-point pain scale used in the control group may have exaggerated this discrepancy when one lower grade of pain severity was equal to a 0.25-drop in pain score compared with a 0.1-drop in the 10-point pain scale.
 
Lamplot et al23 reported that the use of periarticular injection and multimodal analgesics could lower pain scores, with fewer adverse effects, lower narcotic usage, higher patient satisfaction, and faster recovery. At the AHNH, TKA protocols for perioperative pain management, blood management, and rehabilitation were altered following the establishment of the Joint Replacement Centre in October 2015. For the pain management protocol, the hospital now uses preemptive oral pregabalin, paracetamol, and etoricoxib if not contra-indicated. The anaesthetist performs a single-injection femoral nerve block or adductor canal block before anaesthesia. Surgeons deliver IPMI. The postoperative cocktail consists of pregabalin, paracetamol, etoricoxib, and tramadol. The new protocols have made a significant contribution to the improvement in postoperative patient recovery.24 25 Further studies will be conducted on the new perioperative analgesic protocol to confirm its efficacy.
 
There were limitations to this retrospective study, which compared two groups of patients with TKA performed during different periods of time. First, possible secular changes to patient expectations and pain assessment tools might have led to discordant outcomes when IPMI was evaluated. Second, the pain scale did not focus separately on rest pain and motion pain. Third, although the data were selectively verified by the author, there might have been errors in data extraction and coding of other data. Last but not least, because TKAs were performed by more than one surgeon, it was difficult to standardise the intra-operative soft-tissue tension and balancing and the injection technique of IPMI. If the knee was made too tight or IPMI missed the quadriceps tendon, the patient would experience greater postoperative pain.
 
In conclusion, IPMI effectively decreases parenteral morphine consumption for up to 42 hours following TKA in patients with OA of the knee.
 
Declaration
The author has disclosed no conflicts of interest. No funding was received for this study.
 
References
1. Bonica JJ. Postoperative pain. In: Bonica JJ, editor. The management of pain. 2nd ed. Philadelphia: Lea and Febiger; 1990: 461-80.
2. Ranawat CS, Ranawat AS, Mehta A. Total knee arthroplasty rehabilitation protocol: what makes the difference? J Arthroplasty 2003;18(3 Suppl 1):27-30. Crossref
3. Singelyn FJ, Deyaert M, Joris D, Pendeville E, Gouverneur JM. Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous three-in-one block on postoperative pain and knee rehabilitation after unilateral total knee arthroplasty. Anesth Analg 1998;87:88-92. Crossref
4. Shoji H, Solomonow M, Yoshino S, D’Ambrosia R, Dabezies E. Factors affecting postoperative flexion in total knee arthroplasty. Orthopedics 1990;13:643-9.
5. Lavernia C, Cardona D, Rossi MD, Lee D. Multimodal pain management and arthrofibrosis. J Arthroplasty 2008;23(6 Suppl 1):74-9. Crossref
6. Busch CA, Shore BJ, Bhandari R, et al. Efficacy of periarticular multimodal drug injection in total knee arthroplasty. A randomized trial. J Bone Joint Surg Am 2006;88:959-63. Crossref
7. Maheshwari AV, Blum YC, Shekhar L, Ranawat AS, Ranawat CS. Multimodal pain management after total hip and knee arthroplasty at the Ranawat Orthopaedic Center. Clin Orthop Relat Res 2009;467:1418-23. Crossref
8. Chu CP, Yap JC, Chen PP, Hung HH. Postoperative outcome in Chinese patients having primary total knee arthroplasty under general anaesthesia/intravenous patient-controlled analgesia compared to spinal-epidural anaesthesia/analgesia. Hong Kong Med J 2006;12:442-7.
9. Lozano LM, Núñez M, Sastre S, Popescu D. Total knee arthroplasty in the context of severe and morbid obesity in adults. Open Obes J 2012;4:1-10. Crossref
10. Ringrose NH, Cross MJ. Femoral nerve block in knee joint surgery. Am J Sports Med 1984;12:398-402. Crossref
11. Heard SO, Edwards WT, Ferrari D, et al. Analgesic effect of intraarticular bupivacaine or morphine after arthroscopic knee surgery: a randomized, prospective, double-blind study. Anesth Analg 1992;74:822-6. Crossref
12. Woolf CJ, Chong MS. Preemptive analgesia—treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 1993;77:362-79. Crossref
13. Mullaji A, Kanna R, Shetty GM, Chavda V, Singh DP. Efficacy of periarticular injection of bupivacaine, fentanyl, and methylprednisolone in total knee arthroplasty: a prospective, randomized trial. J Arthroplasty 2010;25:851-7. Crossref
14. Mauerhan DR, Campbell M, Miller JS, Mokris JG, Gregory A, Kiebzak GM. Intra-articular morphine and/or bupivacaine in the management of pain after total knee arthroplasty. J Arthroplasty 1997;12:546-52. Crossref
15. Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med 1995;332:1685-90. Crossref
16. Stein C. Peripheral analgesic actions of opioids. J Pain Symptom Manage 1991;6:119-24. Crossref
17. Stein C. Peripheral mechanisms of opioid analgesia. Anesth Analg 1993;76:182-91. Crossref
18. Leone S, Di Cianni S, Casati A, Fanelli G. Pharmacology, toxicology, and clinical use of new long acting local anesthetics, ropivacaine and levobupivacaine. Acta Biomed 2008;79:92-105.
19. Parvataneni HK, Ranawat AS, Ranawat CS. The use of local periarticular injections in the management of postoperative pain after total hip and knee replacement: a multimodal approach. Instr Course Lect 2007;56:125-31.
20. Parvataneni HK, Shah VP, Howard H, Cole N, Ranawat AS, Ranawat CS. Controlling pain after total hip and knee arthroplasty using a multimodal protocol with local periarticular injections: a prospective randomized study. J Arthoplasty 2007;22(6 Suppl 2):33-8. Crossref
21. Andersen KV, Nikolajsen L, Haraldsted V, Odgaard A, Soballe K. Local infiltration analgesia for total knee arthroplasty: should ketorolac be added? Br J Anaesth 2013;111:242-8. Crossref
22. Sharrock NE, Haas SB, Hargett MJ, Urquhart B, Insall JN, Scuderi G. Effects of epidural anesthesia on the incidence of deep-vein thrombosis after total knee arthroplasty. J Bone Joint Surg Am 1991;73:502-6. Crossref
23. Lamplot JD, Wagner ER, Manning DW. Multimodal pain management in total knee arthroplasty: a prospective randomized controlled trial. J Arthroplasty 2014;29:329-34. Crossref
24. Ng FY, Ng JK, Chiu KY, Yan CH, Chan CW. Multimodal periarticular injection vs continuous femoral nerve block after total knee arthroplasty: a prospective, crossover, randomized clinical trial. J Arthroplasty 2012;27:1234-8. Crossref
25. Wu JW, Wong YC. Elective unilateral total knee replacement using continuous femoral nerve blockade versus conventional patient-controlled analgesia: perioperative patient management based on a multidisciplinary pathway. Hong Kong Med J 2014;20:45-51.

Bacteriology and risk factors associated with periprosthetic joint infection after primary total knee arthroplasty: retrospective study of 2543 cases

Hong Kong Med J 2018 Apr;24(2):152–7 | Epub 29 Mar 2018
DOI: 10.12809/hkmj176885
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Bacteriology and risk factors associated with periprosthetic joint infection after primary total knee arthroplasty: retrospective study of 2543 cases
KT Siu1; FY Ng2; PK Chan1; Henry CH Fu1; CH Yan3; KY Chiu3
1 Department of Orthopaedics and Traumatology, Queen Mary Hospital, Pokfulam, Hong Kong
2 Private practice, Hong Kong
3 Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
 
Corresponding author: Prof KY Chiu (pkychiu@hkucc.hku.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Periprosthetic joint infection after total knee arthroplasty is a serious complication. This study aimed to identify risk factors and bacteriological features associated with periprosthetic joint infection after primary total knee arthroplasty performed at a teaching hospital.
 
Methods: We reviewed 2543 elective primary total knee arthroplasties performed at our institution from 1993 to 2013. Data were collected from the Hong Kong Hospital Authority’s Clinical Data Analysis and Reporting System, the Infection Control Team, and the joint replacement division registry. The association between potential risk factors and periprosthetic joint infection was examined by univariable analysis and multivariable logistic regression. Univariable analyses were also performed to examine the association between potential risk factors and bacteriology and between potential risk factors, including bacteriology, and early-onset infection.
 
Results: The incidence of periprosthetic joint infection in our series was 1.34% (n=34). The incidence of early-onset infection was 0.39% (n=24). Of the periprosthetic joint infections, 29.4% were early-onset infections. In both univariable and multivariable analyses, only rheumatoid arthritis was a significant predictor of periprosthetic joint infection. Methicillin-sensitive Staphylococcus aureus was the most common causative organism. We did not identify any significant association between potential risk factors and bacteriology. Periprosthetic joint infection caused by skin flora was positively associated with early-onset infection but the association was not statistically significant.
 
Conclusion: The incidence of periprosthetic joint infection after elective primary total knee arthroplasty performed at our institution from 1993 to 2013 was 1.34%. Rheumatoid arthritis was a significant risk factor for periprosthetic joint infection.
 
 
New knowledge added by this study
  • The incidence of periprosthetic joint infection after elective primary total knee arthroplasty performed at our institution from 1993 to 2013 was 1.34%.
  • Rheumatoid arthritis was the only significant risk factor identified in the series.
Implications for clinical practice or policy
  • Early-onset infection may be associated with infection with skin flora. Therefore, in early-onset periprosthetic joint infection with negative cultures, an empirical antibiotic regimen should preferably provide adequate coverage against skin flora organisms.
 
 
Introduction
Periprosthetic joint infection (PJI) is an uncommon but serious complication after total knee arthroplasty (TKA). Treatment is often challenging and has a major impact on the patient. Multiple operations are often required and patients may suffer from a long period of disability. Moreover, PJI incurs considerable health care costs.1 2 3 Therefore, multiple strategies including antibiotic prophylaxis, body exhaust systems, and laminar airflow systems have been developed to reduce the incidence of PJI. Studies have also identified modifiable risk factors for PJI after elective total joint replacement,4 5 6 7 8 9 10 11 12 13 14 with the aim of further reducing the incidence of PJI. However, local data on the risk factors and bacteriological features associated with PJI are still lacking.
 
This study had several aims. First, it aimed to provide the most up-to-date local data on incidence of and risk factors for PJI, including age, sex, presence of diabetes, presence of rheumatoid arthritis, and one-stage bilateral TKA. Second, this study aimed to provide an update on the bacteriology of PJI after elective primary TKA and to examine the association between potential risk factors and bacteriology. Third, we attempted to determine which risk factors, including bacteriology, were more likely to be associated with early-onset infection after elective primary TKA.
 
It is hoped that risk factors can be optimised or modified to prevent infection after TKA. Furthermore, an improved understanding of local bacteriological patterns and their relationship with various risk factors can help guide antimicrobial therapy.
 
Methods
We reviewed 2543 elective primary TKAs performed at the Queen Mary Hospital, Hong Kong, from 1993 to 2013. Data were collected by an infection control nurse of the Department of Microbiology who was blinded to the study objectives. The cohort data were collected from the Hong Kong Hospital Authority’s Clinical Data Analysis and Reporting System, the Infection Control Team, and the hospital’s joint replacement division registry. The keywords used in the data search were ‘periprosthetic joint infection’, ‘total knee arthroplasty’, and ‘surgical site infection’. Revision arthroplasties and knee arthroplasties for malignant conditions were excluded from the study. In patients with a history of native joint infection, elective primary TKA was performed only after eradication of the infection. Patients with active bacteraemia were also precluded from elective primary TKA until they were infection-free. There were no cases of severe immunosuppression. In relation to infection control, the majority of perioperative protocols for primary TKA were the same throughout the study period. Preoperatively, intravenous antibiotic prophylaxis (1 g of cefazolin) was given within 1 h before skin incision. In patients with penicillin allergy, other antibiotics were prescribed as appropriate. Intra-operatively, laminar airflow and body exhaust systems were used. There was no routine use of antibiotic-loaded cement or postoperative antibiotics. Postoperative wound management was the same throughout the study period.
 
Cohort characteristics, occurrence of PJI, and bacteriological data were retrieved. Bacterial type was defined as infection with skin flora or non-skin flora. Skin flora included methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S aureus (MRSA), methicillin-susceptible coagulase-negative staphylococci (MSCNS), and methicillin-resistant coagulase-negative staphylococci (MRCNS). Other organisms were considered non-skin flora.
 
The following potential risk factors for PJI were analysed: age, sex, presence of diabetes, presence of rheumatoid arthritis, and one-stage bilateral TKA. They were examined by univariable analyses and then multivariable logistic regression to identify potential predictors of PJI, while controlling for confounders. We also studied the association of those potential risk factors with bacteriology and with the timing of infection onset; culture-negative PJI was excluded from these analyses. According to a working party convened by the Musculoskeletal Infection Society in 2014,15 PJI that occurs within 90 days of the index operation is considered early-onset infection, whereas PJI that occurs later is considered late-onset infection.
 
Both univariable and multivariable logistic regression in this study used the simultaneous entry method, with covariates of age (as a continuous variable) and sex, diabetes, rheumatoid arthritis, and one-stage bilateral TKA (as dichotomous variables). Outcomes are presented as odds ratios (ORs) with 95% confidence intervals (CIs). The regression model and data fitting were assessed using the Hosmer–Lemeshow goodness-of-fit test, and diabetes and one-stage bilateral TKA were excluded from the final model because of poor goodness-of-fit. For associations between potential risk factors and bacteriology and between potential risk factors and early onset of infection, only univariable analyses were used owing to small numbers of events. Categorical variables were compared with the chi-square test, whereas age was compared with the independent t test (two-tailed). Significance was assumed if P<0.05. All statistical analyses were conducted using SPSS version 22.0 (IBM Corporation, Armonk [NY], United States). The study was conducted in accordance with the principles outlined in the Declaration of Helsinki.
 
Results
The incidence of PJI in our series was 1.34% (n=34). The incidence of early-onset infection was 0.39% (n=10) and that of late-onset infection was 0.94% (n=24). Among the cases PJI, 29.4% were early-onset infection. Early-onset infection occurred within a median of 17 days after arthroplasty (interquartile range, 9-32 days). Late-onset infection occurred within a median of 1 year and 8 months after arthroplasty (interquartile range, 7 months to 2 years and 11 months). Fifty-nine percent of infections occurred in the first year of surgery, whereas 74% occurred in the first 2 years.
 
The mean (standard deviation) age was 69 (9) years, with a range from 21 to 91 years; age followed a normal distribution. Overall, PJI developed in 10 males (1.9%) and 24 females (1.2%). In the one-stage bilateral TKA group, PJI occurred in 13 knees (1.2%). For the single-side TKA group, 21 knees (1.4%) developed PJI. Nine patients with diabetes (1.9%) and 25 patients without diabetes (1.2%) developed PJI. The highest rate of PJI, at 3.1%, was found in patients with rheumatoid arthritis, compared with 1.2% in patients without rheumatoid arthritis. The descriptive data are summarised in Table 1.
 

Table 1. Descriptive statistics for potential risk factors according to occurrence of periprosthetic joint infection after primary total knee arthroplasty
 
The most frequent causative organism was MSSA (26.5%, n=9), followed by MRSA (17.6%, n=6), Streptococcus spp (8.8%, n=3), MSCNS (5.9%, n=2), Escherichia coli (5.9%, n=2), Salmonella (5.9%, n=2), MRCNS (2.9%, n=1) and Mycobacterium tuberculosis (2.9%, n=1), The three cases of streptococcal infection comprised two Streptococcus dysgalactiae infections and one Streptococcus agalactiae infection. Culture-negative PJI comprised 23.5% of cases (n=8). Methicillin-resistant strains constituted 39% of all staphylococcal organisms. There was no significant association between the potential risk factors and skin flora infection (Table 2).
 

Table 2. Association between potential risk factors for periprosthetic joint infection after primary total knee arthroplasty and bacteriology
 
Rheumatoid arthritis was a significant risk factor of PJI in the univariable analysis, with an OR of 2.67 (95% CI, 1.15-6.20; P=0.02), as well as in the multivariable analysis, with an OR of 3.12 (CI, 1.29-7.56; P=0.01) [Table 3]. Being male (OR=1.9; P=0.11 in the multivariable analysis) and having diabetes (OR=1.54; P=0.27 in the univariable analysis) were not significantly associated with PJI.
 

Table 3. Results of univariable and multivariable analyses of potential risk factors for periprosthetic joint infection after primary total knee arthroplasty
 
Age (P=0.655), sex (P=0.961), diabetes (P=0.462), and rheumatoid arthritis (P=0.315) were not associated with early-onset infection (Table 4). Infection caused by skin flora was associated with early-onset infection (P=0.099), but the association was not statistically significant.
 

Table 4. Association between potential risk factors for periprosthetic joint infection after primary total knee arthroplasty and onset of infection
 
Discussion
In this study, the incidence of PJI after primary TKA was 1.34% and the incidence of early-onset infection was 0.39%. The majority of PJIs (70%) were late-onset infections. The reported incidence of PJI after primary TKA ranges from 1.1% to 2.18%.16 17 18 Pulido et al16 reported the incidence of PJI after TKA to be 1.1%, of which 27% were diagnosed during the first 30 days after arthroplasty, and a majority of 65% were diagnosed in the first year after surgery. In our study, the average time to diagnosis was 431 days after the index surgery (range, 11-1699 days).
 
Rheumatoid arthritis was a significant risk factor for PJI after primary TKA. This finding is in keeping with the current literature.6 8 11 Although various authors have found male sex to be a risk factor for PJI,4 19 20 the association was not significant in this study. The OR of 1.9 may be of clinical importance but not significant as a result of the small number of PJIs and inadequate statistical power. The correlation between age and PJI has been a matter of controversy, with some reports mentioning young age as a risk factor for PJI4 21 and some otherwise.22 In our study, age was not associated with PJI occurrence. For one-stage bilateral TKA, age has been a controversial risk factor for PJI. Some studies16 23 have suggested that one-stage bilateral TKA is associated with an increased risk of superficial and deep infection. Hussain et al24 nonetheless reported a similar infection rate between one- and two-stage bilateral TKA. Our study did not find an association between one-stage bilateral TKA and PJI occurrence.
 
The local bacteriological pattern for PJI was comparable to that reported in the literature.4 16 In our study, skin flora and gram-positive bacteria were the most commonly isolated organisms, followed by gram-negative bacteria such as Escherichia coli and Salmonella. Coagulase-negative staphylococci were the most common causative organism in one study.4 In contrast, in our series, S aureus was the most common causative organism, particularly methicillin-sensitive strains. Methicillin-resistant strains were less common in our series, constituting 39% of all staphylococcal organisms.
 
Other authors have reported that male sex is a risk factor for PJI, which may be related to a sex difference in immune response to pathogenic bacteria. Studies6 have shown that males (compared with females) have a significantly higher likelihood of being a persistent S aureus carrier. However, our study did not support male sex as a risk factor for infection with skin flora. With regard to onset of infection, PJI caused by skin flora was positively associated with early-onset infection, although the association did not reach statistical significance (P=0.099). Direct inoculation and spread from contiguous foci of infection are more common in early-onset infection caused by wound complications and local soft-tissue conditions. In contrast, distant foci of infection, such as in bacteraemia, play a more important role in late-onset infection. Therefore, in early-onset periprosthetic joint infection with negative cultures, an empirical antibiotic regimen may provide adequate coverage against skin flora organisms.
 
Fan et al20 reported 479 TKAs and rates of 1.9% for superficial wound infection, 0.2% for early deep infection (n=1), and 0.6% for late deep infection (n=2). Methicillin-sensitive S aureus and coagulase-negative staphylococci were causative organisms. Lee et al25 reviewed 1133 primary TKAs and found a 0.71% incidence of PJI. The most common causative organisms in descending order were methicillin-sensitive S aureus, coagulase-negative staphylococci, methicillin-resistant S aureus, and Pseudomonas aeruginosa. This finding is in keeping with our data. Among risk factors identified by Lee et al25 were young age, diabetes, anaemia, thyroid disease, heart disease, lung disease, and long operating time. However, the researchers identified limitations of having only a small number of patients with infection (n=8) and insufficient power for analysis. In addition, multivariable analysis should have been performed to account for the effect of confounders among the multiple risk factors. They also reported the limitation that the mean follow-up duration was only 2 years. A short follow-up period may underestimate the occurrence of late-onset infection.
 
Our study has several limitations. The number of PJI-positive cases was small and thus subgroup analysis was limited. This study included subjects treated at a single centre in Hong Kong; multicentre studies may improve the representativeness of local data. In addition, perioperative management for elective TKA has evolved over the past 20 years, including the introduction of an MRSA-screening programme in 2011. In the screening programme, a nasal swab is taken from all elective joint-replacement patients. Patients with a positive result are prescribed 5 days of decolonisation therapy including a daily chlorhexidine bath. Furthermore, intravenous vancomycin is now administered for prophylaxis instead of cefazolin.26
 
There are many potential risk factors for PJI documented in the literature. Nonetheless, only a limited number were included in this study, most of which are not be modifiable. Thus, it may not provide the necessary guidance for preoperative optimisation. Furthermore, the exclusion of some potential risk factors may have led to inadequate control for potential confounding factors. Inclusion of more risk factors with better characterisation is needed to provide a more comprehensive understanding and to better account for the confounding effect of other variables.
 
Conclusion
The incidence of PJI after elective primary TKA in our institution over two decades from 1993 to 2013 was 1.34%. Rheumatoid arthritis was a significant risk factor for PJI in this series. In the early-onset infection group, PJI was caused by skin flora, but this was not statistically significant. It is hoped that this study has updated the local data for PJI after primary TKA and serves as a model for future related studies.
 
Acknowledgements
We thank colleagues from the Department of Orthopaedics and Traumatology and the Infection Control Team at the Queen Mary Hospital for their assistance in data collection, and those who advised on this project to make its publication possible.
 
Declaration
The authors have no conflicts of interest to disclose.
 
References
1. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 2012;27(8 Suppl):61-5.e1. Crossref
2. Lamarsalle L, Hunt B, Schauf M, Szwarcensztein K, Valentine WJ. Evaluating the clinical and economic burden of healthcare-associated infections during hospitalization for surgery in France. Epidemiol Infect 2013;141:2473-82. Crossref
3. Nero DC, Lipp MJ, Callahan MA. The financial impact of hospital-acquired conditions. J Health Care Finance 2012;38:40-9.
4. Crowe B, Payne A, Evangelista PJ, et al. Risk factors for infection following total knee arthroplasty: a series of 3836 cases from one institution. J Arthroplasty 2015;30:2275-8. Crossref
5. Meller MM, Toossi N, Johanson NA, Gonzalez MH, Son MS, Lau EC. Risk and cost of 90-day complications in morbidly and superobese patients after total knee arthroplasty. J Arthroplasty 2016;31:2091-8. Crossref
6. Zmistowski B, Alijanipour P. Risk factors for periprosthetic joint infection. In: Springer BD, Parvizi J, editors. Periprosthetic Joint Infection of the Hip and Knee. New York: Springer; 2014: 15-40. Crossref
7. Jämsen E, Huhtala H, Puolakka T, Moilanen T. Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am 2009;91:38-47. Crossref
8. Wilson MG, Kelley K, Thornhill TS. Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am 1990;72:878-83. Crossref
9. Namba RS, Inacio MC, Paxton EW. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees. J Bone Joint Surg Am 2013;95:775-82. Crossref
10. Pruzansky JS, Bronson MJ, Grelsamer RP, Strauss E, Moucha CS. Prevalence of modifiable surgical site infection risk factors in hip and knee joint arthroplasty patients at an urban academic hospital. J Arthroplasty 2014;29:272-6. Crossref
11. Chesney D, Sales J, Elton R, Brenkel IJ. Infection after knee arthroplasty: a prospective study of 1509 cases. J Arthroplasty 2008;23:355-9. Crossref
12. Moucha CS, Clyburn T, Evans RP, Prokuski L. Modifiable risk factors for surgical site infection. J Bone Joint Surg Am 2011;93:398-404.
13. Peersman G, Laskin R, Davis J, Peterson M. Infection in total knee replacement: a retrospective review of 6489 total knee replacements. Clin Orthop Relat Res 2001;392:15-23. Crossref
14. Rasouli MR, Restrepo C, Maltenfort MG, Purtill JJ, Parvizi J. Risk factors for surgical site infection following total joint arthroplasty. J Bone Joint Surg Am 2014;96:e158. Crossref
15. Parvizi J, Gehrke T; International Consensus Group on Periprosthetic Joint Infection. Definition of periprosthetic joint infection. J Arthroplasty 2014;29:1331. Crossref
16. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 2008;466:1710-5. Crossref
17. Tsaras G, Osmon DR, Mabry T, et al. Incidence, secular trends, and outcomes of prosthetic joint infection: a population based study, Olmsted County, Minnesota, 1969-2007. Infect Control Hosp Epidemiol 2012;33:1207-12. Crossref
18. Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev 2014;27:302-45. Crossref
19. Herwaldt LA, Cullen JJ, French P, et al. Preoperative risk factors for nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol 2004;25:481-4. Crossref
20. Fan JC, Hung HH, Fung KY. Infection in primary total knee replacement. Hong Kong Med J 2008;14:40-5.
21. Meehan JP, Danielsen B, Kim SH, Jamali AA, White RH. Younger age is associated with a higher risk of early periprosthetic joint infection and aseptic mechanical failure after total knee arthroplasty. J Bone Joint Surg Am 2014;96:529-35. Crossref
22. Berbari EF, Osmon DR, Lahr B, et al. The Mayo prosthetic joint infection risk score: implication for surgical site infection reporting and risk stratification. Infect Control Hosp Epidemiol 2012;33:774-81. Crossref
23. Luscombe JC, Theivendran K, Abudu A, Carter SR. The relative safety of one-stage bilateral total knee arthroplasty. Int Orthop 2009;33:101-4. Crossref
24. Hussain N, Chien T, Hussain F, et al. Simultaneous versus staged bilateral total knee arthroplasty: a meta-analysis evaluating mortality, peri-operative complications and infection rates. HSS J 2013;9:50-9. Crossref
25. Lee QJ, Mak WP, Wong YC. Risk factors for periprosthetic joint infection in total knee arthroplasty. J Orthop Surg (Hong Kong) 2015;23:282-6. Crossref
26. Cheng VC, Tai JW, Wong ZS, et al. Transmission of methicillin-resistant Staphylococcus aureus in the long term care facilities in Hong Kong. BMC Infect Dis 2013;13:205. Crossref

Pages