Isolated spinal artery aneurysm: a rare culprit of subarachnoid haemorrhage

DOI: 10.12809/hkmj144230
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Isolated spinal artery aneurysm: a rare culprit of subarachnoid haemorrhage
Tony HT Sung, MB, ChB, FRCR; Warren KW Leung, FHKCR, FHKAM (Radiology); Bill MH Lai, MB, BS, FRCR; Jennifer LS Khoo, FHKCR, FHKAM (Radiology)
Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
Corresponding author: Dr Tony HT Sung (sht557@ha.org.hk), (tttony100@gmail.com)
 Full paper in PDF
Abstract
Isolated spinal artery aneurysm is a rare lesion which could be accountable for spontaneous spinal subarachnoid haemorrhage. We describe the case of a 74-year-old man presenting with sudden onset of chest pain radiating to the neck and back, with subsequent headache and confusion. Initial computed tomography aortogram revealed incidental finding of subtle acute spinal subarachnoid haemorrhage. A set of computed tomography scans of the brain showed further acute intracranial subarachnoid haemorrhage with posterior predominance, small amount of intraventricular haemorrhage, and absence of intracranial vascular lesions. Subsequent magnetic resonance imaging demonstrated a thrombosed intradural spinal aneurysm with surrounding sentinel clot, which was trapped and excised during surgical exploration. High level of clinical alertness is required in order not to miss this rare but detrimental entity. Its relevant aetiopathological features and implications for clinical management are discussed.
 
 
 
Introduction
Aneurysmal subarachnoid haemorrhage (SAH) is an uncommon but fatal clinical event. The reported incidence in a recent international population-based epidemiological study ranged between 2 and 16 per 100 000 population,1 and the mortality rate ranged from 8% to 67%.2 Among all SAH cases, less than 1% are considered to originate from the spine.3 We present a case of isolated spinal artery aneurysm as a rare culprit of spinal and intracranial SAH to illustrate the diagnostic challenge, its relevant aetiopathological features, and implications for clinical management.
 
Case report
A 74-year-old Chinese man with a history of hypertension and ischaemic heart disease presented to the Accident and Emergency Department in February 2013 for sudden onset of chest pain radiating to the neck and back. Clinical examination and electrocardiogram on admission showed no evidence of myocardial infarction. Initial working diagnosis of acute aortic dissection was also excluded with urgent computed tomography (CT) aortogram. On retrospective analysis, subtle but definite hyperdensities within the thecal sac at upper thoracic levels were noted, suggestive of acute spinal SAH (Fig 1).
 

Figure 1. (a, b) Axial and (c) coronal reformatted images of the contrast computed tomography (CT) aortograms demonstrate subtle hyperdensities within the dural sac at upper thoracic levels, suggesting acute spinal subarachnoid haemorrhage (arrows). The cerebrospinal fluid in normal subjects should be hypodense, similar to water attenuation on CT. The spinal cord is outlined as a central elongated hypodense structure simulating a contrast myelogram
 
The patient developed gradual progressive headache and confusion requiring intubation on the fourth day of admission. Plain CT of the brain at that time revealed further diffuse acute SAH with predominance over the posterior aspect, as well as a small amount of acute intraventricular haemorrhage. No skull vault fracture was observed. Concurrent CT cerebral arteriogram and venogram did not demonstrate any aneurysms or venous sinus thrombosis. Subsequent digital subtraction angiogram (DSA) of cerebral arteries performed on the next day was unremarkable.
 
In view of posterior predominance of the intracranial SAH with negative cerebral angiograms, an urgent magnetic resonance imaging (MRI) of the brain and cervical spine (Fig 2) was performed for suspected subtle intracranial pathology and a spinal origin of SAH (observed rarely). A lobulated 8-mm intradural, extramedullary lesion with internal hypointense signal was seen at the T1/2 level abutting the lateral surface of the spinal cord. Trace contrast enhancement was noted within the lesion. Adjacent hyperintense signal and susceptibility artefacts within the dural sac were also observed, suggestive of sentinel clot formation. The spinal cord was displaced slightly by the lesion with associated mild cord oedema. Radiological differential diagnosis at this juncture included cavernoma, largely thrombosed spinal aneurysm, other exophytic haemorrhagic intramedullary tumour or slow-flow arteriovenous malformation (AVM).
 

Figure 2. (a) Axial T1-, (b) T2- and (c) post-contrast fat-suppressed T1-weighted magnetic resonance imaging (MRI) of the spine at T1 level shows a lobulated intradural, extramedullary hypointense lesion with subtle contrast enhancement (arrows) and surrounding hyperintense blood clot. The spinal cord (arrowheads) is displaced laterally with intramedullary T2-hyperintense oedema. Corresponding sagittal (d) T1-, (e) T2-, and (f) post-contrast fat-suppressed T1-weighted MRI of the spine also shows the lobulated intradural lesion and surrounding blood clot
 
Subsequent laminectomy and surgical exploration were performed for definitive diagnosis, which revealed a 7-mm saccular aneurysm surrounded by fibrin and an old haematoma from C7 to T2 level. The aneurysm arose from and was incorporated with the radicular artery at T1 level, showing internal partial thrombosis. The aneurysmal sac was trapped and carefully excised without jeopardising the rest of the arterial supply to the cord. The patient had good clinical recovery in postoperative rehabilitation with no further neurological complaints.
 
Discussion
Compared with more common causes of spinal SAH like AVM, dural arteriovenous fistula (dAVF) and haemorrhagic spinal cord tumours, spinal artery aneurysm remains a rare entity with a reported incidence of less than 1 in 3000 spinal angiograms, according to a large-scale review by Pia and Djindjian.4 Ever since the first case report on spinal aneurysm back in 1930,5 experience from various studies remains limited mainly to isolated case reports and case series with small sample sizes.
 
Spinal aneurysms are distinct from intracranial counterparts in several ways. First, they occur mostly along the course of their parent arteries which have a small calibre and are less affected by atherosclerosis.6 On the contrary, intracranial aneurysms are well known for their predilection for branching points of large-sized arteries which are more haemodynamically challenged. Second, spinal aneurysms tend to be small in size, whereas giant aneurysms are exclusively found intracranially, especially in patients with connective tissue disease. Third, many spinal aneurysms are found to be dissecting aneurysms in histology, which explains their fusiform shape and lack of a surgical neck.5 This hinders direct surgical clipping during treatment planning.
 
For aetiology, isolated spinal aneurysms, as in our case, are rare lesions. More commonly, they are associated with concomitant vascular lesions or occlusions which recruit the spinal artery as a collateral route for supplying and increasing local blood flow. This, in turn, imposes haemodynamic stress and induces aneurysm formation along the parent arteries. Reported associations include spinal cord AVM,7 dAVF,8 aortic coarctation,5 Moyamoya disease,9 and bilateral vertebral artery occlusion.10 Another group of spinal aneurysms is related to underlying vasculopathies. Common examples include collagen vascular disease such as rheumatoid arthritis,11 mycosis,12 and syphilis.5
 
The diagnosis of spinal artery aneurysm could be challenging and delayed due to its rarity. Most patients present with headache and backache related to aneurysmal rupture and SAH. Neurological deficits including paraparesis, quadriplegia, and cord compression have also been reported.13 As for investigations, MRI and DSA of the spine are sufficient to demonstrate the location and vascular anatomy of a spinal artery aneurysm on most occasions which, in turn, are valuable for treatment planning by neurosurgeons. The position of the aneurysm with respect to the spinal cord determines whether the anterior approach for transthoracic vertebrectomy or posterior laminectomy is most appropriate. In a large-scale literature review by Geibprasert et al,14 32 spinal artery aneurysms were studied, in which the majority (62.5%) arose from the anterior spinal artery. Origin from the radicular artery, as in our case, was scarcely seen (n=2). The authors also observed that posterior spinal artery aneurysms were predominantly isolated dissecting aneurysms. On the contrary, those from the anterior spinal artery are more diverse in aetiology, eg, related to candidiasis and connective tissue disease, which implies a non-surgical management approach with medical treatment for the underlying disorder. Even for isolated dissecting aneurysms from the anterior axis, surgical ligation or endovascular embolisation is still limited by increased risk of postoperative complications including spinal cord infarction due to possible compromise of the dominant arterial supply to the cord. Options of surgical approach include resection and wrapping of the aneurysmal sac, with possible microvascular reconstruction in individual cases. Rare cases of spontaneous complete healing of the dissecting aneurysm have been reported,12 but prompt treatment should not be delayed due to the associated severe complications.
 
Conclusion
Spinal artery aneurysms are rare culprits of SAH, with different morphological features of their intracranial counterparts. Associations with concurrent vascular lesions and vasculopathy are frequent, with a minority of cases being isolated in aetiology. Magnetic resonance imaging and DSA of the spine show their merit in delineating the location and vascular anatomy of a spinal artery aneurysm, which are key determinants in management planning. Surgical treatment should be prompt and performed cautiously in view of possible substantial neurological deficit when the arterial supply of the cord is jeopardised.
 
References
1. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 2009;8:355-69. Crossref
2. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 2009;8:635-42. Crossref
3. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet 2007;369:306-18. Crossref
4. Pia HW, Djindjian R. Spinal angiomas: advances in diagnosis and therapy. Berlin: Springer Verlag; 1987.
5. Rengachary SS, Duke DA, Tsai FY, Kragel PJ. Spinal arterial aneurysm: case report. Neurosurgery 1993;33:125-9; discussion 129-30. Crossref
6. Leech PJ, Stokes BA, ApSimon T, Harper C. Unruptured aneurysm of the anterior spinal artery presenting as paraparesis. Case report. J Neurosurg 1976;45:331-3. Crossref
7. Konan AV, Raymond J, Roy D. Transarterial embolization of aneurysms associated with spinal cord arteriovenous malformations. Report of four cases. J Neurosurg 1999;90(1 Suppl):148-54.
8. Malek AM, Halbach VV, Phatouros CC, et al. Spinal dural arteriovenous fistula with an associated feeding artery aneurysm: case report. Neurosurgery 1999;44:877-80. Crossref
9. Walz DM, Woldenberg RF, Setton A. Pseudoaneurysm of the anterior spinal artery in a patient with Moyamoya: an unusual cause of subarachnoid hemorrhage. AJNR Am J Neuroradiol 2006;27:1576-8.
10. Kawamura S, Yoshida T, Nonoyama Y, Yamada M, Suzuki A, Yasui N. Ruptured anterior spinal artery aneurysm: a case report. Surg Neurol 1999;51:608-12. Crossref
11. Toyota S, Wakayama A, Fujimoto Y, Sugiura S, Yoshimine T. Dissecting aneurysm of the radiculomedullary artery originating from extracranial vertebral artery dissection in a patient with rheumatoid cervical spine disease: an unusual cause of subarachnoid hemorrhage. Case report. J Neurosurg Spine 2007;7:660-3. Crossref
12. Berlis A, Scheufler KM, Schmahl C, Rauer S, Götz F, Schumacher M. Solitary spinal artery aneurysms as a rare source of spinal subarachnoid hemorrhage: potential etiology and treatment strategy. ANJR Am J Neuroradiol 2005;26:405-10.
13. Yahiro T, Hirakawa K, Iwaasa M, Tsugu H, Fukushima T, Utsunomiya H. Pseudoaneurysm of the thoracic radiculomedullary artery with subarachnoid hemorrhage. Case report. J Neurosurg 2004;100(3 Suppl Spine):312-5.
14. Geibprasert S, Krings T, Apitzsch J, Reinges MH, Nolte KW, Hans FJ. Subarachnoid hemorrhage following posterior spinal artery aneurysm. A case report and review of the literature. Interv Neuroradiol 2010;16:183-90.

Acquired factor V inhibitor in a patient receiving venous-venous extracorporeal membrane oxygenation for Legionella pneumonia

DOI: 10.12809/hkmj134141
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Acquired factor V inhibitor in a patient receiving venous-venous extracorporeal membrane oxygenation for Legionella pneumonia
Anne KH Leung, FHKCA, FHKAM (Anaesthesiology)1; George WY Ng, FHKCP, FHKAM (Medicine)1; KC Sin, FHKCP, FHKAM (Medicine)1; SY Au, FHKCP, FHKAM (Medicine)1; KY Lai, FHKCP, FHKAM (Medicine)1; KL Lee, FHKCP, FHKAM (Medicine)2; KI Law, FHKCP, FHKAM (Medicine)2
1 Intensive Care Unit, Queen Elizabeth Hospital, Jordan, Hong Kong
2 Intensive Care Unit, United Christian Hospital, Kwun Tong, Hong Kong
 
Corresponding author: Dr Anne KH Leung (leungkha@ha.org.hk)
 
 Full paper in PDF
Abstract
We report a rare complication of factor V deficiency in a patient having Legionella pneumonia. This patient also had other complications like severe acute respiratory distress syndrome, acute kidney injury, and septic shock that required venous-venous extracorporeal membrane oxygenation support. This is the first reported case of acquired factor V deficiency in a patient receiving extracorporeal membrane oxygenation for Legionella pneumonia. With the combined use of intravenous immunoglobulin, rituximab and plasma exchange, we achieved rapid clearance of the factor V inhibitor within 1 week so as to allow safe decannulation of extracorporeal membrane oxygenation.
 
 
Case report
This was the case of a 53-year-old lorry driver with a history of pulmonary tuberculosis and chronic smoking, who presented in December 2012 with fever, cough, and sputum. Chest X-ray (CXR) showed left lower zone consolidation; the patient was diagnosed to have community-acquired pneumonia which was treated with ceftriaxone and azithromycin. Two days later, both the renal and liver functions worsened with elevation of serum urea level to 23.2 mmol/L (reference range [RR], 8-8.1 mmol/L), creatinine level to 493 µmol/L (RR, 62-106 µmol/L), aspartate transaminase level to 300 IU/L (reference level [RL], <40 IU/L), and alanine transaminase level up to 94 IU/L (RL, <41 IU/L). There was severe rhabdomyolysis with increased serum creatine kinase levels to 11 010 IU/L (RR, 39-308 IU/L). Urine tested positive for Legionella antigen. Antibiotic was changed to piperacillin-tazobactam and azithromycin. The patient developed respiratory failure the next day and was admitted to the intensive care unit (ICU) for ventilator support. His condition gradually stabilised over the next 10 days and sputum culture showed growth of Legionella pneumophila serogroup 1.
 
By day 11 in the ICU, he developed secondary deterioration with rapid progression of pulmonary infiltrates on CXR, septic shock, and acute kidney injury. Sputum culture after ICU admission showed growth of Pseudomonas aeruginosa and Corynebacterium species. Antibiotic was changed to meropenem and levofloxacin. By day 12, his oxygenation could not be maintained with conventional ventilation and the Murray score was 3.5. The patient was referred for extracorporeal membrane oxygenation (ECMO) support.
 
As his condition was unstable for transfer to the ECMO centre, venous-venous ECMO (VV-ECMO) was initiated at the referring hospital by percutaneous placement of two ECMO cannulas (23F and 19F) into the femoral vein and right internal jugular vein, respectively. The ECMO circuitry consisted of the Quadrox-i hollow-fibre oxygenator and Cardiohelp centrifugal pump (Maquet Cardiopulmonary AG, Germany). The circuit flow was started at 3.2 to 2.8 L/min during the first ECMO day, and then subsequently increased to 4.0 to 5.0 L/min to achieve PaO2 of 8 to 10 kPa. The ventilator setting was then decreased to peak airway pressure of <25 cm H2O, positive end–expiratory pressure of 10 cm H2O and FiO2 of 0.4. Heparin was started according to protocol with bolus 70 unit/kg after cannulation, followed by continuous infusion at 10 unit/kg/h to achieve an activated clotting time (ACT) of 200 to 220 seconds. The coagulation profile, ACT, renal function, and arterial blood gas were monitored every 4 hours.
 
Before initiation of VV-ECMO, the baseline international normalised ratio (INR) was 1.1 and activated partial thromboplastin time (APTT) was 33.7 seconds (RR, 28-34.6 seconds). A full blood count showed a haemoglobin concentration of 68 g/L, white cell count of 16 x 109 /L, and a platelet count of 169 x 109 /L. Continuous veno-venous haemofiltration (CVVH) was started for renal support. By day 4 of ECMO, INR started to prolong (1.61) and gradually increased to 2.32 and 3.36 over the next 2 days. Heparin was stopped, and vitamin K 10 mg and repeated fresh frozen plasma (FFP) transfusions ranging from 8 to 14 units per day were given. Throughout this period, the fibrinogen level remained normal at 4.44 g/L (RR, 2-4.5 g/L) and platelet count was greater than 100 x 109 /L. Liver function and ammonia level were normal. The coagulopathy could not be corrected by FFP. A haematologist was consulted and further tests were arranged. By day 8, the INR peaked at 4.06, and APTT increased to 115 seconds with slight prolongation of thrombin time (TT) to 15.3 seconds (TT control = 14.4 seconds). Coagulation factor assay showed factor V of 1% (RR, 50-200%) while factor VII, VIII, IX, X, XI and XII levels were within reference intervals. Factor V inhibitor assay showed levels increased up to 6 Bethesda units. The diagnosis of acquired factor V inhibitors was made.
 
In the presence of significantly high levels of factor V inhibitor and risk of spontaneous intracranial bleed, intravenous immunoglobulin (IVIG) at 60 g/day was given for 2 days. The patient’s INR decreased from 3.96 to 2.56 and APTT decreased from 105.4 to 55.3 seconds. The workup for immune markers including C3, C4, rheumatoid factor, antinuclear antibody, antineutrophil cytoplasmic and perinuclear neutrophil antibodies, anti-extractable nuclear antigen, and anti-cardiolipin antibodies was negative. The tumour markers were negative as well. The patient received no surgical procedure. He had been put on four antibiotics after ECMO including azithromycin, meropenem, fluconazole, and linezolid. By day 4 of ECMO, fluconazole was replaced with anidulafungin for fungal cover.
 
Despite IVIG, the patient developed significant clinical bleeding with full-stream haematuria and bronchoscopy showed extensive blood clots in the left lower lobe. At the same time, his pulmonary mechanics and CXR started to improve after 10 days of ECMO support and he appeared ready to be weaned off from ECMO. It was decided to give him one dose of rituximab 700 mg on day 11 of ECMO. His INR decreased to 1.29 and APTT to 33.6 seconds over the next 2 days (Figs 1 and 2). The patient was successfully decannulated on day 13 of ECMO. The haematuria remained severe and required continuous bladder irrigation. Citrate CVVH was started for renal support. One session of plasma exchange was given after decannulation. The haematuria eventually stopped by day 16. Two days later, urinary output returned to normal and the patient was successfully extubated. By day 19, the patient was transferred back to the parent hospital with INR of 1.02, APTT of 30.4 seconds, and factor V assay of 173%. The patient was discharged 3 weeks later and his coagulation profile remained normal without further eradication therapy. At the time of discharge, the patient was able to walk with the help of a walking stick, could perform activities of daily living independently, and was dialysis-independent.
 

Figure 1. INR and APTT profiles of the patient during the 19-day stay at ECMO centre
 

Figure 2. Detailed INR and APTT profiles of the patient from day 8 to day 12
 
Discussion
Factor V deficiency: causes, clinical course, laboratory finding, treatment, and outcome
Factor V is a plasma cofactor that activates prothrombin to thrombin, thus, affecting the common final pathway of the coagulation cascade. About 20% of the circulating factor V is found within platelet α granules.1 The first reported case of congenital factor V deficiency was from Germany in 1955,2 and to date, about 200 reported cases have been reported.1 Congenital factor V deficiency is a rare autosomal recessive disease with a prevalence of 1 in 1 000 000.1 In acquired cases, it is related to the presence of factor V inhibitor.3 In one case series of 78 patients, the commonest cause was the use of antibiotics (42%), including β-lactam antibiotics, aminoglycosides, cephalosporins, tetracyclines, and quinolones. The next common cause was surgical procedure (31%) with exposure to bovine thrombin, which is a topical haemostatic agent widely used in cardiovascular or neurosurgical procedures.4 Infection, cancer, and autoimmune disease were present in 23%, 22%, and 13% of the cases, respectively. About 16 (21%) cases had no identifiable causes.3
 
The median age of presentation was 69 years, with a tendency for male predominance.3 Overall, 81% of cases had bleeding, and the mucous membranes of most frequently reported sites including gastro-intestinal tract, genito-urinary tract, and the airway were noted in up to 62% of cases.3 Cerebral haemorrhage occurred in only 8% of cases, but was associated with 50% mortality.3 Some cases were associated with thrombotic complications rather than haemorrhage.5
 
Laboratory findings included a prolonged prothrombin time and APTT that failed to be corrected by mixing studies. Thrombin time was usually normal unless there is presence of thrombin inhibitor. Bethesda assay is used to detect and quantify the presence of inhibitors. One Bethesda unit is defined as the amount that decreases factor V concentration by 50%.4 5 Bleeding correlated with factor V activity with median factor V activity being 1% in bleeders and 3% in non-bleeders.3
 
Treatment mainly consists of controlling bleeding and eradication of the autoantibody. Daily infusion of 15 to 20 mL/kg of FFP is usually sufficient.1 In refractory cases, recombinant factor VIIa, activated prothrombin complex concentrate, and platelet transfusion are therapeutic options.1 3 6 Plasmapheresis and immunoadsorption can rapidly reduce antibody titres. For immunosuppression, corticosteroids and cyclophosphamide have shown a success rate of 63%.3 Use of high-dose IVIG and anti-20 monoclonal antibody rituximab were associated with rapidly increasing factor V activity, although results were conflicting.3 6
 
The alloantibody against factor V was polyclonal immunoglobulin G7 and it disappeared in the majority of cases (69%) either after eradiation therapy (43/78 patients) or spontaneously (12/78 patients).3 7 For those patients who survived, factor V inhibitor persisted for a mean period of 5.1 months8 (range, <1 month to several years).6 7 For those related to bovine thrombin, the inhibitor emerged after a mean of 8.3 days of exposure and persisted for a shorter time of 2.3 months.8 Overall, 72% of patients with acquired factor V inhibitors suffered bleeding complications, with 17% of those being fatal.8 For those with acquired factor V deficiency with a known cause like bovine thrombin–induced factor V inhibitor, bleeding was less common (33%) and was associated with better prognosis and lower fatality (6%).8 The highest mortality was found in patients with autoimmune disorder (30%) or cancer (24%).3
 
Use of extracorporeal membrane oxygenation for Legionella pneumonia
Use of ECMO has been reported locally for treating influenza H1N1 with good outcome.9 Use of ECMO in Legionella pneumonia with acute respiratory distress syndrome has been reported,10 11 12 with survival rate ranging from 67% to 84% in the UK series.10 11 Acute renal failure was a common complication of legionellosis with 53.7% requiring renal replacement therapy. The prognosis for this subgroup of patients was poor with only 33% (vs 70% in those without acute renal failure) surviving to decannulation and mortality increasing from 15% to 53%.10 Major bleeding complications reported in these series included intra-abdominal bleeding, cardiac tamponade, chest drain–related haemorrhage, and gastro-intestinal and intracranial bleeding.9 10 11
 
This is the first reported case of acquired factor V inhibition in a patient put on VV-ECMO for Legionella pneumonia. Although our patient had acute renal failure and ECMO was instituted late in his course of illness (13 days after intubation), he responded favourably. The cause of the acquired factor V inhibition was uncertain. It may be related to the underlying infection, use of antibiotics, or be idiopathic in nature. The coagulopathy was not corrected by FFP transfusion and the patient had symptomatic bleeding with haematuria and pulmonary haemorrhage despite IVIG therapy. Although we could wait for the natural disappearance of the factor V inhibitor, it might prolong weaning from ECMO and increase the risk of fatal complications like intracranial bleeding. Yet, too early prescription of rituximab as in this patient might mask the effect of IVIG. Lastly, there was a remote possibility that the observed decrease in INR and APTT could be due to natural progression of the underlying disease rather than a treatment effect as only 15% of patients have spontaneous resolution of disease and the factor V inhibitors can persist in the body for months.3 6 7 In one case report, INR remained elevated for 10 days despite immunosuppressive therapy and returned to normal over the next 2 weeks.4 The need for ECMO decannulation and presence of active symptoms made correction of coagulopathy more imminent. The use of multimodal therapy including IVIG, rituximab, and plasma exchange in this patient successfully halted the progress of the factor V inhibitor and allowed safe decannulation within a period of 1 week.
 
References
1. Huang JN, Koerper MA. Factor V deficiency: a concise review. Haemophilia 2008;14:1164-9. Crossref
2. Horder MH. Isolated factor V deficiency caused by a specific inhibitor [in German]. Acta Haematol 1955;13:235-41.
3. Franchini M, Lippi G. Acquired factor V inhibitors: a systematic review. J Thromb Thrombolysis 2011;31:449-57. Crossref
4. Morris CJ, Curry N. Acquired factor V inhibitor in a critically ill patient. Anaesthesia 2009;64:1014-7. Crossref
5. Crookston K, Rosenbaum L, Gober-Wilcox J. Coagulation. Acquired bleeding disorders. Factor V inhibitor. Available from: http://www.pathologyoutlines.com/topic/coagulationfactorVinhibitor.html. Accessed Nov 2013.
6. Lu L, Liu Y, Wei J, Zhang L, Zhang L, Yang R. Acquired inhibitor of factor V: first report in China and literature review. Haemophilia 2004;10:661-4. Crossref
7. van Spronsen DJ, Oosting JD, Hoffmann JJ, Breed WP. Factor V inhibitor associated with cold agglutinin disease. Ann Hematol 1998;76:49-50. Crossref
8. Streiff MB, Ness PM. Acquired FV inhibitors: a needless iatrogenic complication of bovine thrombin exposure. Transfusion 2002;42:18-26. Crossref
9. Chan KK, Lee KL, Lam PK, Law KI, Joynt GM, Yan WW. Hong Kong’s experience on the use of extracorporeal membrane oxygenation for the treatment of influenza A (H1N1). Hong Kong Med J 2010;16:447-54.
10. Bryner B, Miskulin J, Smith C, et al. Extracorporeal life support for acute respiratory distress syndrome due to severe Legionella pneumonia. Perfusion 2014;29:39-43. Crossref
11. Noah MA, Ramachandra G, Hickey MM, et al. Extracorporeal membrane oxygenation and severe acute respiratory distress secondary to Legionella: 10 year experience. ASAIO J 2013;59:328-30.
12. Harris DJ, Duke GJ, McMillan J. Extracorporeal membrane oxygenation for Legionnaires disease: a case report. Crit Care Resusc 2002;4:28-30.
 

Unexplained childhood anaemia: idiopathic pulmonary hemosiderosis

DOI: 10.12809/hkmj144237
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Unexplained childhood anaemia: idiopathic pulmonary hemosiderosis
KK Siu, MB, ChB, MRCPCH1; Rever Li, MB, ChB, FHKAM (Paediatrics)2; SY Lam, MB, BS, FHKAM (Paediatrics)2
1 Department of Paediatrics, Kwong Wah Hospital, Yaumatei, Hong Kong
2 Department of Paediatrics, Tuen Mun Hospital, Tuen Mun, Hong Kong
 
Corresponding author: Dr KK Siu (skk053@ha.org.hk)
 
 Full paper in PDF
Abstract
This report demonstrates pulmonary haemorrhage as a differential cause of anaemia. Idiopathic pulmonary hemosiderosis is a rare disease in children; it is classically described as a triad of haemoptysis, pulmonary infiltrates on chest radiograph, and iron-deficiency anaemia. However, anaemia may be the only presenting feature of idiopathic pulmonary hemosiderosis in children due to occult pulmonary haemorrhage. In addition, the serum ferritin is falsely high in idiopathic pulmonary hemosiderosis which increases the diagnostic difficulty. We recommend that pulmonary haemorrhage be suspected in any child presenting with iron-deficiency anaemia and persistent bilateral pulmonary infiltrates.
 
 
Case report
We report the case of a 5-year-old boy, who presented with recurrent episodes of unexplained iron-deficiency anaemia in February 2010 since the age of 27 months. Serial chest X-rays (CXRs) showed bilateral reticulonodular haziness. Bronchoalveolar lavage and lung biopsy confirmed the diagnosis of idiopathic pulmonary hemosiderosis (IPH).
 
The patient first presented at 27 months of age in Mainland China with malaise, loss of appetite, and shortness of breath for 10 days. He did not have fever, cough, or haemoptysis. He received two doses of H1N1 vaccination before pallor was noted. There was no history of drug or herb intake.
 
The presenting haemoglobin (Hb) level was 65 g/L (reference range [RR], 115-145 g/L), mean corpuscular volume (MCV) 84.4 fL (RR, 76-90 fL), mean corpuscular haemoglobin (MCH) level 25.8 pg (RR, 25-31 pg), and reticulocyte count 10.4% (reference level [RL], <2%). White cell count and platelet count were unremarkable. Blood smear showed moderate anisopoikilocytosis with polychromasia. Bone marrow aspiration and trephine biopsy revealed active marrow with erythroid preponderance.
 
Other investigations were performed for anaemia. Serum lactate dehydrogenase (LDH) level was elevated to 980 U/L (RL, <615 U/L). Haptoglobin level was reduced (<0.09 g/L; RR, 0.3-2.7 g/L). Direct Coombs test was negative. Bilirubin was normal. Urine for bilirubin and urobilinogen was negative. Haemoglobin pattern, serum vitamin B12, and G6PD activity were unremarkable. Serum ferritin level was 137 pmol/L (RR, 45-449 pmol/L). Antinuclear antibody assay was negative. Flow cytometry showed normal expression of CD55 and CD59 which ruled out paroxysmal nocturnal haemoglobinuria. Donath-Landsteiner antibody assay was negative, which excluded the diagnosis of paroxysmal cold haemoglobinuria.
 
Blood work for viral infection including antibodies to parvovirus, Epstein-Barr virus (EBV), mycoplasma, and viral titres was unremarkable.
 
Screening for blood loss was negative. Stool for occult blood and urine for Hb were negative. Red blood cell scan showed no evidence of haemorrhage.
 
Blood transfusion was given to correct the anaemia. Microcytic hypochromic anaemia was noted at 2 months after presentation. Haemoglobin level was 54 g/L. Mean corpuscular volume dropped from 84.4 fL to 68 fL. Mean corpuscular haemoglobin level was 21.3 pg. Iron profile showed a low serum iron level of 3 µmol/L (RR, 5-20 µmol/L), elevated total iron-binding capacity (TIBC) of 70 µmol/L (RR, 37-68 µmol/L), and iron saturation of 4% (RR, 20-55%). However, the serum ferritin level was normal at 220 pmol/L (RR, 45-449 pmol/L). Iron supplement was started as a therapeutic trial for suspected iron-deficiency anaemia.
 
His Hb level remained stable in the next 2 years. However, in the subsequent 8 months, there were three intermittent episodes of anaemia (lowest Hb level, 60 g/L). The anaemia occurred with fever and cough which were considered symptoms of pneumonia and upper respiratory tract infection. There was no history of haemoptysis.
 
At 36 months after the presentation, he was admitted again for pallor, fatigue, and fever. This time, he needed oxygen therapy. Chest was clear with mild subcostal insucking. Hepatomegaly of 4 cm below the costal margin was noted. Chest X-ray showed bilateral reticulonodular haziness (Fig 1). Haemoglobin level was 61 g/L. Both MCV (78 fL) and MCH level (25 pg) were in the lower normal limits. The serum ferritin level was 879 pmol/L. A diagnosis of pneumonia was made; he was started on oral co-amoxiclav (amoxicillin and clavulanic acid) and azithromycin and given blood transfusion. Fever subsided and oxygen was weaned off. Ultrasonography of abdomen performed 1 month later showed no hepatomegaly; mild hepatic coarsening was suggestive of parenchymal disease. Liver function tests were normal all along. However, the patient tested positive for EBV immunoglobulin (Ig) M antibodies. Thus, he was diagnosed to have pneumonia with EBV infection.
 

Figure 1. A chest X-ray showing bilateral reticulonodular haziness
 
Review of old CXRs showed similar reticulonodular shadows. In view of his history of recurrent iron-deficiency anaemia and CXR findings, pulmonary hemosiderosis was suspected. Flexible bronchoscopy was performed; bronchoscopic lavage over left lingular and right middle lobe showed blood-stained fluid. Bronchoalveolar lavage yielded abundant hemosiderin-laden macrophages (HLM index, 92%). High-resolution computed tomography of thorax showed extensive ground glass opacities and reticular shadows, suggestive of interstitial lung disease. Diffuse visceral pleural brownish deposits were noted over the entire left lung on video-assisted thoracoscopy. Lung biopsy was performed to rule out systemic disorders with pulmonary capillaritis, which could cause diffuse alveolar haemorrhage (DAH). These included Goodpasture’s syndrome, IgA nephropathy, Wegener’s granulomatosis, systemic lupus erythematosus, and antiphospholipid syndrome. Biopsy of lung tissue showed numerous HLM. There was no evidence of capillaritis or vasculitis. Absence of fibrosis and negative exposure history also excluded hypersensitivity pneumonitis. Immunostaining for IgG, IgM, and IgA was negative. The overall picture was compatible with pulmonary hemosiderosis.
 
Further blood investigations were performed to exclude systemic causes of pulmonary haemorrhage as stated above. Antiglomerular basement membrane antibodies, rheumatoid factor, anti-neutrophil cytoplasmic antibodies, antinuclear antibodies, anti-extractable nuclear antibodies, and anti-cardiolipin IgG antibodies were not detected. Furthermore, the patient was negative for anti-transglutaminase antibody for coeliac disease. He tested weakly positive for IgE antibodies against cow’s milk. Immunoglobulin pattern was unremarkable apart from mildly raised IgA antibody level at 2.28 g/L (range, 0.5-1.92 g/L). Renal function and urinalysis were normal.
 
A diagnosis of IPH was made based on the above findings. Oral prednisolone was started after the diagnosis for disease control. Chest X-ray performed after 3 months of prednisolone showed improvement in reticulonodular densities (Fig 2). We plan to monitor the disease with clinical symptoms, Hb levels, LDH levels, CXRs, and spirometry.
 

Figure 2. A chest X-ray performed after 3 months of prednisolone therapy showing improvement in reticulonodular densities
 
Discussion
Idiopathic pulmonary hemosiderosis is a rare disease in children with an unknown aetiology. The estimated yearly incidence among Swedish children from 1960 through 1979 was 0.24 per 1 000 000 children.1 A retrospective review of records from a tertiary paediatric hospital in northern Taiwan noted five cases over 25 years.2 Patients classically presented with a triad of recurrent or chronic pulmonary symptoms (cough, dyspnoea, wheeze, haemoptysis), pulmonary infiltrates on CXR, and iron-deficiency anaemia. Our patient had only anaemia without obvious underlying causes. Subsequent CXR changes led to the suspicion of IPH.
 
Serum ferritin has been traditionally taken as a reliable surrogate marker of body iron stores. Hypoferritinaemia is commonly used as a diagnostic marker for iron deficiency.3 However, as it is an acute-phase reactant, abnormally raised serum ferritin level may be seen during acute infection or liver disease even in the presence of iron deficiency.4 In IPH, iron study usually shows low serum iron with low iron saturation, and microcytosis and hypochromia in the blood picture. However, plasma ferritin level can be normal or elevated in IPH because of alveolar synthesis and release into the circulation and does not reflect the iron deposits in the body.5 This makes the diagnosis of iron-deficiency anaemia in IPH difficult. We recommend the use of serum iron and transferrin saturation (serum iron/TIBC) instead to evaluate suspected iron-deficiency anaemia.4
 
Diagnosis of IPH is based on exclusion of other causes of intrapulmonary haemorrhage and systemic diseases. In the absence of systemic disease, findings of HLM in bronchoscopic lavage or gastric aspirate/sputum along with chronic pulmonary symptoms lead to a diagnosis of IPH. Lung biopsy is the gold standard for diagnosis. We performed lung biopsy to exclude pulmonary capillaritis, which is one of the causes of DAH. Pulmonary capillaritis is a small-vessel vasculitis, which can occur as an isolated condition or in association with multiple systemic vasculitides. Isolated DAH without identifiable causation or associated disease is referred to as IPH.6
 
Daily oral corticosteroids or weekly intravenous pulse methylprednisolone is commonly used in the induction treatment of IPH. Other immunosuppressive agents such as azathioprine, cyclophosphamide, and hydroxychloroquine have also been used alone or in combination with oral corticosteroids.7 8 9 10 11 Low-dose oral corticosteroids, azathioprine, or methotrexate are used in maintenance phase. As there is lack of large patient series and inadequate follow-up in previous studies, the prognosis of IPH remains unclear. However, aggressive treatment with the use of corticosteroids and immunosuppressive agents are associated with a prolonged survival and improved prognosis.12 Long-term low-dose corticosteroid therapy was also reported to result in a milder disease course and prevent bleeding crisis.13
 
In conclusion, iron-deficiency anaemia results from poor dietary intake of iron in infants and toddlers. However, every child older than 24 months presenting with iron-deficiency anaemia should be evaluated for chronic blood loss. In this report, we have illustrated that anaemia without any respiratory symptoms can be the sole presenting feature of IPH, preceding other signs and symptoms, especially in young children. Haemoptysis may not be present in young children with IPH, as they tend to swallow their sputum. We recommend that when children present with unexplained anaemia and bilateral lung infiltrations, pulmonary haemorrhage should be suspected.
 
References
1. Kjellman B, Elinder G, Garwicz S, Svan H. Idiopathic pulmonary haemosiderosis in Swedish children. Acta Paediatr Scand 1984;73:584-8. Crossref
2. Yao TC, Hung IJ, Wong KS, Huang JL, Niu CK. Idiopathic pulmonary haemosiderosis: an Oriental experience. J Paediatr Child Health 2003;39:27-30. Crossref
3. Rybo E. Diagnosis of iron deficiency. Scand J Haematol Suppl 1985;43:5-39.
4. Li CH, Lee AC, Mak TW, Szeto SC. Transferrin saturation for the diagnosis of iron deficiency in febrile anaemic children. Hong Kong Pract 2003;25:363-6.
5. Ioachimescu OC, Sieber S, Kotch A. Idiopathic pulmonary haemosiderosis revisited. Eur Respir J 2004;24:162-70. Crossref
6. Fullmer JJ, Langston C, Dishop MK, Fan LL. Pulmonary capillaritis in children: a review of eight cases with comparison to other alveolar hemorrhage syndromes. J Pediatr 2005;146:376-81. Crossref
7. Milman N, Pedersen FM. Idiopathic pulmonary haemosiderosis. Epidemiology, pathogenic aspects and diagnosis. Respir Med 1998;92:902-7. Crossref
8. Rossi GA, Balzano E, Battistini E, et al. Long-term prednisolone and azathioprine treatment of a patient with idiopathic pulmonary hemosiderosis. Pediatr Pulmonol 1992;13:176-80. Crossref
9. Colombo JL, Stolz SM. Treatment of life-threatening primary pulmonary hemosiderosis with cyclophosphamide. Chest 1992;102:959-60. Crossref
10. Zaki M, al Saleh Q, al Mutari G. Effectiveness of chloroquine therapy in idiopathic pulmonary hemosiderosis. Pediatr Pulmonol 1995;20:125-6. Crossref
11. Bush A, Sheppard MN, Warner JO. Chloroquine in idiopathic pulmonary haemosiderosis. Arch Dis Child 1992;67:625-7. Crossref
12. Saeed MM, Woo MS, MacLaughlin EF, Margetis MF, Keens TG. Prognosis in pediatric idiopathic pulmonary hemosiderosis. Chest 1999;116:721-5. Crossref
13. Kiper N, Göçmen A, Ozçelik U, Dilber E, Anadol D. Long-term clinical course of patients with idiopathic pulmonary hemosiderosis (1979-1994): prolonged survival with low-dose corticosteroid therapy. Pediatr Pulmonol 1999;27:180-4. Crossref
 

From observation to aetiology: a case report of a twin fetus-in-fetu and a revisit of the known rarity

DOI: 10.12809/hkmj133925
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
From observation to aetiology: a case report of a twin fetus-in-fetu and a revisit of the known rarity
Kristine KY Pang, MB, ChB, MRCSEd1; Nicholas SY Chao, FCSHK, FHKAM (Surgery)1; TK Tsang, FHKAM (Radiology)2; Betty YT Lau, FHKAM (Obstetrics and Gynaecology)3; KY Leung, FHKAM (Obstetrics and Gynaecology)3; SH Ting, MB, BS4; Michael WY Leung, FCSHK, FHKAM (Surgery)1; Kelvin KW Liu, FCSHK, FHKAM (Surgery)5;
1 Division of Paediatric Surgery, Department of Surgery, Queen Elizabeth Hospital, Jordan, Hong Kong
2 Department of Radiology and Imaging, Queen Elizabeth Hospital, Jordan, Hong Kong
3 Department of Obstetrics and Gynaecology, Queen Elizabeth Hospital, Jordan, Hong Kong
4 Department of Pathology, Queen Elizabeth Hospital, Jordan, Hong Kong
5 Division of Paediatric Surgery, Department of Surgery, United Christian Hospital, Kwun Tong, Hong Kong
 
Corresponding author: Dr Nicholas SY Chao (nickchao@yahoo.com)
 
 Full paper in PDF
Abstract
A baby girl presented with an antenatal diagnosis of a retroperitoneal tumour. Postnatal imaging suggested that this mass contained two fetiform structures with spine and long bone formation. This teratomatous mass was completely excised at 3 weeks of age. Histology was consistent with twin fetuses-in-fetu, revealing two fetiform masses each with an umbilical cord connecting to a common placenta-like mass. Despite a difference in the weight of the twin fetuses-in-fetu, the level of organogenesis was identical and corresponded to fetuses of 10 weeks of gestation. Each mass had four limbs, intact skin, rib cage, intestines, anus, ambiguous genitalia, primitive brain tissue and a spine with ganglion cells in the cord. Although considered a mature teratoma in the current World Health Organization classification, the theory of formation from multiple pregnancies has been commonly implied in more recent literature. The true aetiology of this rare condition remains unclear.
 
 
Introduction
Fetus-in-fetu is a rare condition with an estimated incidence of 1 in 500 000 births.1 It was a descriptive term attributed to Meckel circa 1800. The key feature entails well-organised fetal structures in macroscopic pathology, with vertebral columns and, commonly, long bones of the limbs. Variable degree of organogenesis for the lung, liver, intestines, and genitalia has been commonly reported. Although grouped under the entity of teratoma and considered the well-differentiated end of the neoplastic spectrum in the current World Health Organization (WHO) classification,2 the true aetiology remains unclear. The theory of formation from monozygotic twins has been commonly implied in the literature.3 4 5
 
The commonest presentation of this condition was a painless mass lesion with or without pressure symptoms. Prenatal diagnosis was made in nine out of the 88 cases collectively reported by Hoeffel et al.3 We, hereby, report the case of a twin fetus-in-fetu presenting on antenatal ultrasound, and its histopathology.
 
Case report
Clinical course
A Chinese baby girl was admitted to our neonatal unit on the day of birth for antenatal diagnosis of a retroperitoneal mass in November 2010. This was a singleton pregnancy from natural conception, with allegedly normal antenatal ultrasound in early gestation. There were no additional morphology scans during second trimester ultrasound as the mother was a resident of mainland China where she received her obstetric care. Detailed antenatal ultrasound at 37 weeks of maturity showed a 32 mm x 30 mm x 30 mm mass in the left retroperitoneal region of the fetus. There were no other apparent abnormalities, or complicating intestinal or urinary obstruction. The initial differential diagnoses included congenital adrenal tumour and adrenal haemorrhage.
 
The birth weight of the baby was 4.07 kg. Physical examination showed fullness in the left flank. Targeted ultrasound of the retroperitoneal mass was performed immediately after birth. It showed cystic and solid components with areas of ossification within the mass which were suggestive of a teratoma. Abdominal X-ray showed neither dilated bowel nor calcification. Alpha fetoprotein and beta human chorionic gonadotropin levels measured on day 2 of life were normal for age. Clinically, the patient had no evidence of intestinal obstruction and tolerated full feeding soon after birth.
 
A detailed ultrasound of the abdominal region was performed on day 4 and computed tomography on day 7 (Fig 1). These showed a complex cystic mass between the spleen and the left kidney, with a maximal diameter of 47 mm. Within this single thin-walled cyst, there were two heterogeneous solid masses. Each mass contained a well-ossified spine and two ossified long bones at the caudal end, resembling the configuration of fetal femurs; no cardiac or cranial structures were identifiable.
 

Figure 1. Computed tomography showing the spine of each fetus (arrows)
 
To rule out the likelihood of neuroblastoma, urine catecholamine profile was performed which turned out to be normal. While imaging pointed to a likely fetus-in-fetu, the remote possibility of a mature teratoma could not be completely ruled out. Thus, a decision was made to perform an early excision of the mass.
 
Elective laparotomy was performed on day 14. Mobilisation of the colon at the splenic flexure revealed a retroperitoneal mass between the left kidney and left adrenal gland that was supplied by multiple, small feeding vessels from the aorta and left renal artery. After flush-dividing all investing vessels, the mass was resected with an intact capsule. The baby made good recovery from the operation and was discharged uneventfully on postoperative day 22.
 
Histopathology
Pathological section showed two fetiform masses, each with an umbilical cord connecting to a single placenta-like mass (Fig 2). The lengths of the fetuses were 37 mm and 35 mm, respectively. The larger mass contained better developed fetal structures and weighed 14.2 g, while the smaller mass weighed 9.3 g.
 

Figure 2. Fetuses-in-fetu with ‘umbilical cords’; (inset) mid-sagittal section of the fetus-in-fetu: ossified vertebra was seen containing bone marrow (dotted arrow), the spinal cord (white arrow), the non-patent anus (black arrow), and vacuolised intestines (striped arrows)
 
Within each of the ‘fetuses’, vacuolised intestines could be seen in the abdominal cavity but were leading to a non-patent anus (Fig 2, inset). Ambiguous external genitalia were identified in both fetuses. At the cranial end, there was no skull and no skin coverage. The rest of the fetus was covered by intact skin.
 
Regarding the skeletal formation, there was an ossified segmented spine in each fetus. The spinal cord was identified posterior to the vertebral bodies. A well-developed rib cage with bone and cartilage could be seen in the thoracic region. The pelvic bone and the long bones of the lower limbs were ossified with marrow formation in the centre. Two long bones could be identified in the forearm of the larger fetus. Metatarsals could be identified in both fetuses.
 
Microscopic examination revealed striated muscles, bones, and cartilages in the limbs. Ganglion cells were present in the spinal cord. The fetuses were covered by organised skin tissue and appendages. Respiratory mucosa was identified in the thoracic region. The intestines in the abdominal cavity were lined by intestinal mucosa. There was disorganised primitive brain tissue in the cranial end of both fetuses.
 
Discussion
Fetus-in-fetu is rare, with less than 200 cases reported in the literature. Hui et al6 reported, formally, the first regional case only in 2007. Despite the detailed description in literature, its aetiology and relationship with teratoma remains controversial.
 
Fetus-in-fetu is currently classified as a variant of mature teratoma. Previous case reports of recurrence after resection with malignant transformation also support this classification, whereby fetus-in-fetu should be the mature end of the spectrum of teratoma.7 However, the theory of monozygotic diamniotic twins has been increasingly proposed in the recent literature.3 8 Despite the gaining popularity, there is, as yet no concrete evidence to confirm this relationship. Blood group typing, karyotyping, and DNA analysis, when performed in the previously reported cases, always showed identical findings between the fetuses and their hosts. This finding is, however, compatible with both monozygotic multiple pregnancy theory and teratoma theory.
 
If we consider fetus-in-fetu a result of multiple pregnancy with initial normal embryological development, principles of embryological assessment may be considered. By diagnostic criteria, all fetuses-in-fetu possess vertebrae and, therefore, such an embryo should have reached the age of 24 to 25 days, corresponding to a gestational age of 5 weeks. In our case, and indeed in most other reported cases, the caudal neuropores were also closed. This further aged the estimated gestation to 6 weeks before the development was arrested in these presumed parasitic twins. In our case, since digital rays were clearly identified in the hands and feet, the embryonic age should be at least 44 to 46 days, which is 8 weeks by gestation.9 If we consider the abundant length of small bowel within the abdominal cavity, the gestational age had likely reached 10 weeks for both of these twin fetuses.
 
In conventional embryological assessment of aborted products of gestation, size of the fetus can sometimes be smaller than the normal size for embryological age, since the fetuses often undergo a certain period of growth restriction before the actual death. On the other hand, direct measurement of the specimen size may be slightly larger than the ultrasound assessment due to flattening of the tissue after its passage through the cervix.10 Interestingly, in the reported literature, a poor correlation has been observed between the level of organogenesis and size of the parasitic fetus. In a review of 87 cases by Hoeffel et al,3 there were 10 reported parasitic fetuses weighing over 500 g. The level of organogenesis in these fetuses, however, was immature compared to that of a normal 500 g fetus or newborn.3 If these parasitic fetuses were once products of multiple pregnancies, an interesting conclusion would be that these ‘fetuses’ continued to grow in size after their arrest in development or, theoretically, the ‘death’ of fetuses, although the ‘death’ of such fetuses is always difficult to define in view of their ‘acardiac’ nature.
 
With increasing application of assisted reproductive technology, a higher proportion of multiple pregnancies can now be monitored with ultrasound from early gestation. However, to date, there is no longitudinal observation of the evolution of fetus-in-fetu from multiple pregnancies, nor have there been any reported cases arising from assisted pregnancy. Whilst the earliest antenatal diagnosis of this condition in literature was 16 weeks’ gestation,11 no sequential monitoring of the antenatal history of fetus-in-fetu has been published.
 
In our case, both the twin parasitic fetuses had body weights, sizes, and fetal structures that corresponded well with a gestational age of 10 weeks. A normal ultrasound during the early antenatal period rather suggests that they might have been tiny parasitic fetuses that had grown slowly with the ‘patient’ and reached their significant sizes at term, instead of the popular theory of early normal development followed by parasitic inclusion and arrest of growth. Although with limited antenatal documentation, our case report does not support the popular monozygotic multiple pregnancy theory, and favours, by default, the traditional classification into a teratoma.
 
Conclusion
Less than 200 cases of twin fetus-in-fetu have been reported worldwide, and, to date, this was only the second regional case report. Although classified by WHO as a variant of mature teratoma, the theory of demised multiple pregnancy has gained much support recently. More evidence is needed to confirm either theory. The widespread use of antenatal ultrasound in early gestation may provide more concrete evidence from longitudinal observation and give light to the aetiology of this intriguing condition.
 
References
1. Grant R, Pearn JH. Foetus-in-foetu. Med J Aust 1969;1:1016-20.
2. Scully RE, Young RH, Clement PB. Atlas of tumor pathology, 3rd series, fascicle 23. Washington, DC: Armed Forces Institute of Pathology; 1998: ch13.
3. Hoeffel CC, Nguyen KQ, Phan HT, et al. Fetus in fetu: a case report and literature review. Pediatrics 2000;105:1335-44. CrossRef
4. Lewis RH. Foetus in foetu and retroperitoneal teratoma. Arch Dis Child 1961;36:220-6. CrossRef
5. Thrakral CL, Maji DC, Sajwani MJ. Fetus-in-fetu: a case report and review of the literature. J Pediatr Surg 1998;33:1432-4. CrossRef
6. Hui PW, Lam TP, Chan KL, Lee CP. Fetus in fetu—from prenatal ultrasound and MRI diagnosis to postnatal confirmation. Prenat Diagn 2007;27:657-61. CrossRef
7. Hopkins KL, Dickson PK, Ball TI, Ricketts RR, O’Shea PA, Abramowsky CR. Fetus-in-fetu with malignant recurrence. J Pediatr Surg 1997;32:1476-9. CrossRef
8. Mohan H, Chhabra S, Handa U. Fetus-in-fetu: a rare entity. Fetal Diagn Ther 2007;22:195-7. CrossRef
9. O’Rahilly R, Müller F. Developmental stages in human embryos. Carnegie Institute of Washington; 1987: Publication no. 637.
10. Harkness LN, Rodger M, Baird DT. Morphological and molecular characteristics of living human fetuses between Carnegie stages 7 and 23: ultrasound scanning and direct measurements. Hum Reprod Update 1996;3:25-33. CrossRef
11. Khatib MO, Deschamps F, Couture A, Giacalone PL, Boulot P. Early prenatal ultrasonographic diagnosis of fetus in fetu [in French]. J Gynecol Obstet Biol Reprod (Paris) 1998;27:438-40.
 
Find HKMJ in MEDLINE:
 

Synthetic fibre granuloma of the conjunctiva

DOI: 10.12809/hkmj144210
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Synthetic fibre granuloma of the conjunctiva
ST Mak, FRCSEd (Ophth), FHKAM (Ophthalmology)1,2; YH Lui, FRCPA, FHKCPath3 #; Kenneth KW Li, FRCS (Ed), FHKAM (Ophthalmology)1,2
1 Department of Ophthalmology, United Christian Hospital, Kwun Tong, Hong Kong
2 Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
3 Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
# YH Lui is now with the Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
 
Corresponding author: Dr ST Mak (dr.makst@gmail.com)
 
 Full paper in PDF
Abstract
Synthetic fibre granuloma of the conjunctiva, sometimes known as ‘teddy bear granuloma’, results from granulomatous foreign body reaction of the conjunctiva to synthetic fibres. It is often an incidental finding, most commonly found in children, is unilateral, and occurs in the lower eyelid. We present here, what we believe is the first reported case of synthetic fibre conjunctival granuloma in Hong Kong, together with a review of the condition. An awareness of this clinical entity allows early and accurate diagnosis and early treatment.
 
 
Introduction
Synthetic fibre granuloma of the conjunctiva, sometimes known as ‘teddy bear granuloma’, was first described by Weinberg et al in 1984.1 It is a rare granulomatous foreign body reaction of the conjunctiva to synthetic fibres. It occurs most commonly in children, and usually presents as a unilateral, inferior conjunctival mass of the lower eyelid. The lesion is known as ‘teddy bear granuloma’ because some cases were caused by materials used in stuffed toy animals.2
 
Seventeen cases of conjunctival synthetic fibre ‘teddy bear granuloma’ have been reported in the literature. To the best of our knowledge, this is the first reported case of this condition in Hong Kong.
 
Case report
A 7-year-old girl with good health presented to the ophthalmology clinic of United Christian Hospital, Hong Kong, in December 2012 with a left lower eyelid conjunctival mass for 1 month. There was no history of trauma. It was an incidental finding by the girl’s mother and the girl did not complain of any pain or discomfort. There was no change in visual acuity.
 
Examination showed a 3.5 mm x 1.5 mm conjunctival mass in the inferior fornix of her left lower eyelid (Fig a). It was embedded with a bunch of hair-like material. The lesion prolapsed easily with gentle pressure over the lower eyelid but could not be removed during slit-lamp examination. The rest of her ophthalmological examination was normal. The girl’s mother was very keen on removal of the mass. Excisional biopsy of the mass was performed under general anaesthesia. The mass was excised and sent for histopathological analysis.
 

Figure. (a) A slit-lamp photograph showing a conjunctival mass (arrows) in the inferior fornix of the left lower eyelid. Histopathological sections of the biopsy specimen: (b) conjunctival mucosal lesion contains numerous synthetic fibres in an inflamed background (H&E; original magnification, x 40); (c) synthetic fibres associated with foreign-body giant cell reaction are seen in an inflamed background (H&E; original magnification, x 100); (d) the synthetic fibres are refractile, colourless, and surrounded by histiocytic giant cells (H&E; original magnification, x 200)
 
Microscopic examination revealed a piece of conjunctival mucosa with stromal granulation tissue showing heavy chronic inflammation, mild activity, and aggregates of foreign body consistent with synthetic fibres, associated with giant cell reaction (Figs b to d). The fibres were refractile and colourless. In another section, scanty hair was seen in the stroma. The picture was compatible with a diagnosis of synthetic fibre granuloma of the conjunctiva.
 
Postoperatively, the wound healed well and there was no recurrence of the lesion at 1.5 years after excision.
 
Discussion
Protective mechanisms of the eye including blinking and tearing normally remove any foreign body that comes into contact with the ocular surface. Occasionally, foreign body may be retained in the eyelid fornix, encapsulated by mucous, embedded in the underlying stroma, and, subsequently, induces a local inflammatory response.2 Synthetic fibre granuloma of the conjunctiva occurs when synthetic fibres are inoculated in the conjunctiva of the eyelid fornix leading to an inflammatory reaction. The lesion is also commonly known as ‘teddy bear granuloma’ because some cases were caused by materials used in stuffed toy animals.2 Various other objects have been suggested as the source of the lesion, including blankets, beddings, and pullover sweaters.2 3 4
 
The majority of patients were brought in by parents or caretakers who identified a mass in the child’s eyelid. The patients were usually asymptomatic, without a history of trauma. Affected children may rarely present with symptoms of ocular irritation and foreign body sensation.5 Synthetic fibre conjunctival granuloma is usually unilateral, and mainly occurs in the inferior eyelid fornix, except in one reported case where it presented superiorly.1
 
Differential diagnoses of synthetic fibre conjunctival granuloma include chalazion, pyogenic granuloma, papillary hyperplasia, sarcoidosis, dermoid, or neoplasm including rhabdomyosarcoma.2 6 7 It has been proposed that the most reliable clinical sign to suggest this diagnosis was the presence of a unilateral inferior conjunctival mass in a child or adolescent.2 In addition, the histological features of synthetic fibre conjunctival granuloma are characteristic and diagnostic. Microscopic examination reveals granulomatous inflammatory cell response with lymphocytes, plasma cells and eosinophils, and foreign-body giant cells surrounding the exogenous synthetic fibres.4 8
 
Treatment of synthetic fibre conjunctival granuloma involves surgical removal of the foreign body and excision of the granuloma.2 Should the granuloma present early and the patient be compliant, it has been suggested to remove the lesion during slit-lamp examination under topical anaesthesia with minimal bleeding and discomfort.9 However, since the granuloma is usually present for a long duration before being noticed, the lesion could be deeply embedded. As a result, excision in the operating theatre under general anaesthesia is often needed, particularly when patients are very young and anxious. Prognosis following surgical excision is excellent.6
 
Although the entity of synthetic fibre conjunctival granuloma was recognised more than two decades ago, clinicians, including ophthalmologists and pathologists, are unfamiliar with this condition.4 While the number of reports in the literature is limited, accurate reporting may actually reveal a higher incidence of this entity.9 An awareness of this condition will allow early and accurate diagnosis and treatment, which subsequently spare the risks and expense associated with general anaesthesia.3
 
Declaration
No conflicts of interests were declared by authors.
 
References
1. Weinberg JC, Eagle RC Jr, Font RL, Streeten BW, Hidayat A, Morris DA. Conjunctival synthetic fiber granuloma. A lesion that resembles conjunctivitis nodosa. Ophthalmology 1984;91:867-72. CrossRef
2. Schmack I, Kang SJ, Grossniklaus HE, Lambert SR. Conjunctival granulomas caused by synthetic fibers: report of two cases and review of literature. J AAPOS 2005;9:567-71. CrossRef
3. Enzenauer RW, Speers WC. Teddy bear granuloma of the conjunctiva. J Pediatr Ophthalmol Strabismus 2002;39:46-8.
4. Ferry AP. Synthetic fiber granuloma. ‘Teddy bear’ granuloma of the conjunctiva. Arch Ophthalmol 1994;112:1339-41. CrossRef
5. Farooq MK, Prause JU, Heegaard S. Synthetic fiber from a teddy bear causing keratitis and conjunctival granuloma: case report. BMC Ophthalmol 2011;11:17. CrossRef
6. Shields JA, Augsburger JJ, Stechschulte J, Repka M. Synthetic fiber granuloma of the conjunctiva. Am J Ophthalmol 1985;99:598-600. CrossRef
7. Lueder GT. Synthetic fiber granuloma. Arch Ophthalmol 1995;113:848-9. CrossRef
8. Batta B, Robin A, George JL, Angioi K. “Teddy bear granuloma”, a rare condition: a case report of a 3-year-old child [in French]. J Fr Ophtalmol 2012;35:117-20. CrossRef
9. Resnick SC, Schainker BA, Ortiz JM. Conjunctival synthetic and nonsynthetic fiber granulomas. Cornea 1991;10:59-62. CrossRef
 
Find HKMJ in MEDLINE:
 

Magnetic resonance imaging features of vascular leiomyoma of the ankle

DOI: 10.12809/hkmj144259
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Magnetic resonance imaging features of vascular leiomyoma of the ankle
Alta YT Lai, MB, BS, FRCR1; CW Tam, FRCR, FHKAM (Radiology)1; John SF Shum, FRCR, FHKAM (Radiology)2; Jennifer LS Khoo, FRCR, FHKAM (Radiology)1; WL Tang, FHKCPath, FHKAM (Pathology)3
1 Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
2 Radiology Department, Hong Kong Baptist Hospital, Kowloon Tong, Hong Kong
3 Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
 
Corresponding author: Dr Alta YT Lai (altalai@gmail.com)
 
 Full paper in PDF
Abstract
Vascular leiomyoma is a benign soft tissue tumour with a predilection for middle-aged women. It is most often seen in the extremities, particularly in the lower leg. The typical lesion is a small, slow-growing subcutaneous nodule. These tumours are often unexpected or preoperatively confused with other soft tissue tumours including low-grade sarcomas, leading to wide surgical excision. This may partly be due to the relatively few studies delineating the characteristic imaging features of this entity. Here, the imaging findings of a case of vascular leiomyoma in the ankle are presented. Literature review of the magnetic resonance imaging findings of published reports and series of vascular leiomyomas of the extremities is also performed.
 
 
Case report
A 47-year-old previously healthy Hong Kong Chinese man presented in January 2012 with a 2-year history of a slow-growing painless mass over the right medial malleolus. Physical examination showed a soft, well-marginated, non-tender mass measuring 2 cm in diameter over the right medial malleolus. The patient was referred for ultrasound and subsequently magnetic resonance imaging (MRI; Figs a to i). The lesion was excised. Macroscopically, it was a disc-shaped mass with smooth outer surface. Cut section showed a mass with a thin capsule and homogeneous, greyish-to-whitish material without necrosis. Microscopy showed proliferation of smooth muscle cells associated with thick-walled blood vessels without evidence of malignancy. The histopathological diagnosis was vascular leiomyoma (Figs j and k).
 

Figure. A 47-year-old man with a 2-year history of a slow-growing, painless, soft ankle mass
(a) Grey-scale ultrasound and (b) power Doppler study demonstrate a well-circumscribed, mildly compressible, mildly echogenic, subcutaneous lesion adjacent to the right medial malleolus with intralesional slow-flow vessels. No feeding artery, dilated draining vein, or phlebolith is found. Overall features are suggestive of a mildly vascular solid mass. (c, g) It is well-circumscribed and markedly hyperintense with a peripheral hypointense rim (arrows) on axial and coronal T2-weighted images. (d) No susceptibility artefacts are observed in the lesion on gradient echo sequence image, suggesting the absence of intralesional haemorrhage. (e, h) It is slightly hyperintense to muscle on T1-weighted images, with (f, i) homogeneous enhancement upon intravenous administration of gadolinium. The underlying bone, subjacent flexor retinaculum (arrowhead) and medial ankle tendons (arrows) were intact. (j, k) Microscopic pictures of the tumour section include central blood vessels (arrows) surrounded by peripheral smooth muscle. The histopathological diagnosis is vascular leiomyoma (H&E, original magnification: [j] x 5 and [k] x 100)
 
Discussion
Vascular leiomyoma, angiomyoma or angioleiomyoma, is a rare benign smooth muscle tumour that originates in the tunica media of veins and arteries. It can be located in the skin, subcutaneous fat, or superficial fasciae of the extremities. It has a predilection for middle-aged women. It can occur anywhere in the body, but is most often seen in the extremities, particularly in the lower leg.1
 
The most frequent clinical presentation is a mass that enlarges slowly over several years. The size usually ranges from subcentimetre to a few centimetres in diameter, but occasionally may grow larger. They are usually oval or round in shape, and can be located in the skin, subcutaneous fat, or the superficial fasciae of the extremities.
 
Pain, with or without tenderness, has been reported in about 60% of patients, and is thought to be caused by the active contraction of smooth muscles resulting in local ischaemia, and is also suggested to be mediated by intratumoural nerve fibres.2 Treatment usually consists of marginal excision.2
 
Angioleiomyomas are rarely diagnosed preoperatively. In a series of 10 cases by Gupte et al1 in 2008, the preoperative or pre-biopsy imaging diagnoses included sarcoma not otherwise specified, schwannoma, myositis ossificans, synovial sarcoma, and fibroma. This may be partly due to the relatively few studies delineating the characteristic imaging features of this entity. The preoperative differentiation of angioleiomyoma from other soft tissue tumours is of clinical importance, especially sarcomas, since angioleiomyomas are benign and can be treated with simple excision. Literature review of the MRI findings of currently published reports and series of vascular leiomyomas of the extremities is presented below.
 
Literature review
Materials, methods, and patient demographics
A PubMed search of the English literature was performed, using the key words “vascular leiomyoma”, “angioleiomyoma”, and “angiomyoma”. From 1998 to 2011, 36 cases of biopsy-proven vascular leiomyomas in the extremities of adults with detailed descriptions of T1-weighted images (T1WI) and T2-weighted images (T2WI) were found. Articles without detailed descriptions or figures of T1WI and T2WI were excluded. Not all studies in the literature may have been included in this review because of unavailability in PubMed or in English language. After including our case, this review has 37 cases. The mean age of the patients was 51 years (range, 20-72 years). There were 16 male and 17 female patients; the gender of the remaining four patients was not stated.
 
Results
Among the 26 lesions with documented sizes, the mean size of the lesions was 3.2 cm (range, 0.4-12 cm). Overall, 40.5% (15/37) of the lesions were in the upper limb and 59.5% (22/37) were in the lower limb. All of them were located in the subcutaneous layer, were well-defined, and round, oval or disc-shaped. On T1WI, 91.9% (34/37) of the tumours showed isointense–to–slightly high signal intensity, 5.4% were heterogeneous, and 2.7% showed low signal intensity. On T2WI, all the cases demonstrated high signal intensity. Signal voids were seen in 10.8% (4/37) of the tumours, either on T1WI or T2WI. Among the 33 cases in which contrast was administered, only two (6.1%) cases showed no or poor enhancement, 93.9% (31/33) showed enhancement, 42.4% (14/33) were homogeneous, and 39.4% (13/33) were described as showing heterogeneous enhancement. One case showed peripheral enhancement, one showed central enhancement. One case showed rapid enhancement and one case demonstrated slow enhancement. Among the cases in which the presence or absence of peripheral hypointense rim was recorded, a hypointense rim was found on T2WI in 85.2% of cases (23/27; Table1 2 3 4 5 6 7 8 9 10 11 12 13 14).
 

Table. Magnetic resonance imaging findings in 37 patients with vascular leiomyomas in extremities1 2 3 4 5 6 7 8 9 10 11 12 13 14
 
Vascular leiomyomas often show similar signal intensity to that of muscle on T1WI. A T2WI is expected to demonstrate mixed areas that are hyper- and isointense to muscle. A well-defined peripheral T2-hypointense rim may be seen, representing the fibrous capsule. It has been reported that T2-hyperintense areas correlated with strong contrast enhancement, whereas isointense areas did not show enhancement after intravenous administration of contrast material.3 It was suggested that the smooth muscle and numerous vessels corresponded to the hyperintense areas, and the fibrous tissue appeared isointense on T2WI. Tortuous vascular structures with signal void may also be seen.
 
Imaging differentials
The differentials of a well-defined, enhancing, subcutaneous nodule or mass with T2-hyperintense signals include synovial sarcoma, other low-grade soft tissue sarcomas, haemangioma, neurogenic tumour, and nodular fasciitis.
 
Low-grade sarcomas such as synovial sarcoma and low-grade myxofibrosarcoma may be slow-growing and appear well-circumscribed on MRI, giving the misleading impression that the lesion is well-localised. Haemorrhage may be present in synovial sarcomas, which may be seen as fluid-fluid levels, T2 hypointensity, or “triple signal intensity”, namely areas of hyperintensity, isointensity and hypointensity relative to fat, due to presence of cystic, solid and fibrous elements with haemorrhage. It is unknown whether the absence of haemorrhage, a more homogeneous appearance, and the presence of a peripheral hypointense rim are reliable distinguishing features favouring angioleiomyoma over otherwise benign-appearing, soft tissue sarcomas; this may be a potential knowledge gap that future prospective comparison studies may serve to fill.
 
Haemangiomas may show homogeneous signals if these are small, making it challenging to differentiate from angioleiomyomas. Phleboliths can be sought for on plain radiographs. Fatty and serpentine vascular elements may be identified in haemangiomas, which are pathognomonic. The classical ‘target’ sign, ‘split-fat’ sign, and fusiform tumour shape demonstrated in neurogenic tumours are not found in angioleiomyomas. Although nodular fasciitis demonstrates similar shape and size as angioleiomyomas, linear extension along the fascia, surrounding oedema, low T1 signal, heterogeneous T2 signal, and non-homogeneous enhancement are features that differ from characteristic imaging features of angioleiomyoma.15
 
On microscopic examination, the presence of tortuous vascular channels surrounded by smooth muscle bundles and areas of myxoid change may be seen. This explains the heterogeneity of signal intensity in the tumour on T2WI. Magnetic resonance imaging–histopathological correlation published by Hwang et al2 stated that the smooth muscle and numerous vessels within each type of vascular leiomyoma corresponded with the hyperintense areas on T2WI, and the tough fibrous tissue appeared isointense on T2WI. In addition, a well-defined peripheral hypointense area on T2WI correlated with the fibrous capsule, and the interlacing isointense areas within the tumour correlated with the various quantity of connective tissue and intravascular thrombus.3
 
Conclusions
Vascular leiomyoma should be considered a possible diagnosis when a well-demarcated oval or round subcutaneous mass with T1-isointense–to–slightly high signal, T2-high signal intensity, hypointense rim, and intense enhancement is seen in the soft tissue of the extremities. It is unknown whether the absence of haemorrhage, a more homogeneous appearance, and the presence of a peripheral hypointense rim are reliable distinguishing features favouring angioleiomyoma over otherwise benign-appearing soft tissue sarcomas; this may be a potential knowledge gap that future prospective comparison studies may serve to fill.
 
References
1. Gupte C, Butt SH, Tirabosco R, Saifuddin A. Angioleiomyoma: magnetic resonance imaging features in ten cases. Skeletal Radiol 2008;37:1003-9. CrossRef
2. Hwang JW, Ahn JM, Kang HS, Suh JS, Kim SM, Seo JW. Vascular leiomyoma of an extremity: MR imaging–pathology correlation. AJR Am J Roentgenol 1998;171:981-5. CrossRef
3. Yoo HJ, Choi JA, Chung JH, et al. Angioleiomyoma in soft tissue of extremities: MRI findings. AJR Am J Roentgenol 2009;192:W291-4. CrossRef
4. Kinoshita T, Ishii K, Abe Y, Naganuma H. Angiomyoma of the lower extremity: MR findings. Skeletal Radiol 1997;26:443-5. CrossRef
5. Turhan-Haktanir N, Haktanir A, Demir Y, Tokyol C, Acar M. Toe leiomyoma: A case report with radiological correlation. Acta Chir Belg 2006;106:92-5.
6. Nagata S, Nishimura H, Uchida M, Hayabuchi N, Zenmyou M, Fukahori S. Giant angioleiomyoma in extremity: report of two cases. Magn Reson Med Sci 2006;5:113-8. CrossRef
7. Hamoui M, Largey A, Ali M, et al. Angioleiomyoma in the ankle mimicking tarsal tunnel syndrome: a case report and review of the literature. J Foot Ankle Surg 2010;49:398.e9-15.
8. Shafi M, Hattori Y, Doi K. Angioleiomyoma of distal ulnar artery of the hand. Hand (N Y) 2010;5:82-5. CrossRef
9. Gulati MS, Kapoor A, Maheshwari J. Angiomyoma of the knee joint: value of magnetic resonance imaging. Australas Radiol 1999;43:353-4. CrossRef
10. Kugimoto Y, Asami A, Shigematsu M, Hotokebuchi T. Giant vascular leiomyoma with extensive calcification in the forearm. J Orthop Sci 2004;9:310-3. CrossRef
11. Waldt S, Rechl H, Rummeny EJ, Woertler K. Imaging of benign and malignant soft tissue masses of the foot. Eur Radiol 2003;13:1125-36.
12. Sookur PA, Saifuddin A. Indeterminate soft-tissue tumors of the hand and wrist: a review based on a clinical series of 39 cases. Skeletal Radiol 2011;40:977-89. CrossRef
13. Okahashi K, Sugimoto K, Iwai M, Oshima M, Takakura Y. Intra-articular angioleiomyoma of the knee: a case report. Knee 2006;13:330-2. CrossRef
14. Stock H, Perino G, Athanasian E, Adler R. Leiomyoma of the foot: sonographic features with pathologic correlation. HSS J 2011;7:94-8. CrossRef
15. Walker EA, Fenton ME, Salesky JS, Murphey MD. Magnetic resonance imaging of benign soft tissue neoplasms in adults. Radiol Clin North Am 2011;49:1197-217. CrossRef
 
Find HKMJ in MEDLINE:
 

Xanthogranulomatous inflammation of terminal ileum: report of a case with small bowel involvement

DOI: 10.12809/hkmj134103
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Xanthogranulomatous inflammation of terminal ileum: report of a case with small bowel involvement
KC Wong, MCSHK, MRCSEd1; Wilson MS Tsui, FIAC, FRCPath2; SJ Chang, FRCS, FRCSEd1
1 Department of Surgery, Caritas Medical Centre, Shamshuipo, Hong Kong
2 Department of Pathology, Caritas Medical Centre, Shamshuipo, Hong Kong
 
Corresponding author: Dr KC Wong(kamkam44@gmail.com)
 
 Full paper in PDF
Abstract
Xanthogranulomatous inflammation is a rare pathological condition most frequently detected in the kidney and gallbladder. Reported herein is a case of xanthogranulomatous inflammation in a 51-year-old male presenting as a mass-forming lesion in the terminal ileum with mucosal ulceration. Diagnostic laparoscopy followed by ileocecectomy was performed due to intra-operative suspicion of carcinoma of appendix. This is a report of the condition involving the terminal ileum with mucosal ulceration and full-thickness involvement of bowel wall which are uncommon features of xanthogranulomatous inflammation in previously reported lower gastro-intestinal tract lesions.
 
 
Introduction
Xanthogranulomatous inflammation (XGI) is a rare but well-defined disease, first reported by Oberling in 1935.1 The disease process was most frequently reported in the kidney and gallbladder. Rare occurrence in the gastro-intestinal tract was illustrated in only one recently reported case in the terminal ileum,2 four reported cases in the colon,3 4 5 6 eight cases in a series of interval appendicectomy specimens,7 and eight cases with gastric involvement.8 9 10 11 12 13 Of the four cases with colonic involvement, two involved the sigmoid colon,3 4 one involved the caecum,5 and one involved the ascending colon.6 Most of these colonic lesions presented with a mass-forming lesion with predominant submucosal involvement, while primary mucosal involvement was only reported in the last case involving the ascending colon. We, herein, report the second case of XGI in the terminal ileum with mucosal ulceration and full-thickness involvement of the bowel wall, presenting as a painful right-lower-quadrant abdominal mass.
 
Case report
A 51-year-old Chinese male presented to the Emergency Department on 2 December 2012. He was a chronic smoker and alcoholic. He complained of right-sided abdominal pain for the past 2 weeks. The pain was not associated with nausea, vomiting, constipation, or diarrhoea. There was no anorexia or weight loss. There was no history of melaena. His medical history included diabetes, hypertension, and gout. There was no history of tuberculosis.
 
He was admitted to a hospital in Mainland China 10 days before the index admission for the same problem. While in that hospital, he had raised white cell count of 16.2 x 109 /L, and an ultrasound of abdomen revealed a gallstone and a renal stone. There was no hydronephrosis. A course of antibiotics was given, but the symptoms persisted. The patient returned from Mainland China on 2 December 2012, and attended our Emergency Department for further management.
 
On admission, the physical examination of the respiratory, cardiovascular, and central nervous systems was unremarkable. Abdominal examination revealed tenderness in the right lower quadrant. Per rectal examination revealed no blood, melaena, or mass. Abdominal X-ray showed no specific abnormalities.
 
His blood tests revealed mildly elevated white cell count of 10.6 x 109 /L (reference range [RR], 3.7-9.2 x 109 /L), haemoglobin level of 137 g/L (RR, 134-171 g/L), normal amylase level of 57 U/L (RR, 30-128 U/L), and normal electrolytes and liver enzymes. An urgent ultrasound of the abdomen and pelvis raised suspicion of acute appendicitis, with a tubular, non-peristaltic, non-compressible structure measuring 1.55 cm in diameter at the appendicular region, with small amount of loculated fluid around the lesion (Fig 1), corresponding with the site of maximum tenderness. The distal end of the lesion was obscured by bowel gas; it could not be ascertained whether it was blind-ended. The same study also revealed the presence of a gallstone and a right lower pole renal stone.
 

Figure 1. An ultrasound image of the right-lower-quadrant mass showing a tubular, non-peristaltic, non-compressible structure in the appendicular region with small amount of loculated free fluid (arrow) around the lesion. The distal end of the lesion is obscured by bowel gas; it could not be ascertained whether it was blind-ended
 
With a preliminary diagnosis of acute appendicitis, diagnostic laparoscopy was performed on 3 December 2012. There was an ileocaecal mass fixed to the posterior abdominal wall, which was difficult to mobilise despite an open approach via gridiron incision. Upon conversion to midline laparotomy, a large inflammatory mass was found at the ileocaecal junction, compatible with an infiltrative tumour. The mass demonstrated through-and-through invasion into the ileal mesentery, involving several loops of the ileum. Ileocaecal lymph node enlargement was noted. The appendix was not identified. There was no gross cavity or pus. With the suspicion of carcinoma of appendix, limited right hemicolectomy with en-bloc resection of the mass together with 65 cm of the terminal ileum, caecum, and proximal ascending colon was performed. Primary sub-end to sub-end, side-to-side anastomosis was fashioned.
 
The postoperative course of the patient was complicated by on-and-off fever with elevated white cell count of up to 22.5 x 109 /L. Blood culture taken on postoperative day 2 yielded no bacterial growth. Erythema and serous discharge were noted in the paraumbilical region of the laparotomy and gridiron wounds, which were managed with dressing and packing. Wound swab yielded scanty growth of Escherichia coli. The fever responded to a 10-day course of cefuroxime and metronidazole. He was discharged on postoperative day 10.
 
A colonoscopy done 4 months after the operation in April 2013 revealed no abnormalities.
 
Pathological examination
Gross examination of the ileocolectomy specimen revealed a 0.5-cm ileal mucosal ulcer, which was 1.5 cm proximal to the ileocaecal valve. The periappendicular mass was haemorrhagic and covered with exudate, within which was a retrocaecal appendix, measuring 5 cm in length and 1 cm in diameter, surrounded by necrotic and yellowish tissue. Cut surface of the appendix was unremarkable. A few lymph nodes were found in the ileocaecal fossa.
 
Microscopic examination of the appendicular mass showed abscess, haemorrhage, and XGI which consisted predominantly of foamy histiocytes, scattered neutrophils, lymphoplasmacytic cells, a few multinucleated giant cells, and congested capillaries with surrounding fibrosis (Fig 2). The foamy histiocytes were positive for CD68 on immunostaining, confirming their histiocytic origin. No Michaelis-Gutmann bodies were detected. The terminal ileum ulcer revealed similar XGI which extended through the bowel wall to involve the mesentery. The appendicular mucosa showed no neutrophilic infiltrate. A few reactive lymph nodes were noted. There was no evidence of malignancy or granuloma.
 

Figure 2. Microscopic examination of the appendicular mass. (a) Terminal ileum featuring ulceration (arrow) and underlying inflammation (H&E; original magnification, x 10). (b) Appendix buried in the inflammatory mass but showing intact muscle wall and non-inflamed mucosa (H&E; original magnification, x 10). (c) Xanthogranulomatous inflammation comprising mainly foamy histiocytes (arrows), scattered neutrophils, a few lymphoid cells, and congested capillaries (H&E; original magnification, x 100). (d) High-power view to reveal the lipid-laden foamy histiocytes (arrows) [H&E; original magnification, x 400]
 
Discussion
Xanthogranulomatous inflammation is a form of chronic inflammatory condition characterised macroscopically by mass-forming golden yellow tumours and microscopically by aggregation of lipid-laden foamy histiocytes including multinucleated giant cells, with a minor component of chronic and acute inflammatory cells and fibrous reaction. It was first described by Oberling in 1935 in three cases of retroperitoneal xanthogranulomas.1 Its occurrence in the endometrium, ovary, fallopian tubes, vagina, testis, epididymis, stomach, bone, skin (as fistulation secondary to inflammation primarily involving another internal organ),14 appendix,7 15 urinary bladder, thyroid, and adrenal glands has been reported, with the highest prevalence reported in the kidney and gallbladder. A majority of XGI cases present as a mass-like lesion with an extension of fibrosis and inflammation to the surrounding tissues, leading to diagnostic difficulties in differentiating them from infiltrative malignant tumours.
 
Pathological differential diagnoses bearing similar histological features include malakoplakia, which is characterised by an inflammatory and destructive xanthomatous proliferation with the presence of Michaelis-Gutmann bodies, which are intracytoplasmic laminated concretions usually positive for periodic acid–Schiff, von Kossa, and Prussian blue stains. Macrophages known as von Hansemann cells are more granular and eosinophilic and have less vacuolated cytoplasm than ordinary histocytes. Other differential diagnoses include localised xanthoma deposits without parenchymal destruction or xanthomas with prominent foam cell features.
 
Although the pathological features of XGI are well described, its exact pathogenesis is not well established.
 
Various proposed mechanisms include chronic recurrent infection, obstruction, immunological disorders, and defective lipid transport. It is generally believed that the localised proliferation of lipid-laden foamy histiocytes in XGI represents chronic suppurative inflammation secondary to interaction between the host and micro-organisms. Examples of immunological disorders include disrupted chemotaxis of polymorphs and macrophages, which is a specific immune response toward Proteus and Escherichia infections. A recently reported case2 involving the terminal ileum proposed a possible mechanism of perforation due to an ingested foreign body. However, none of the above hypotheses were able to fully explain the anatomical distribution of the condition, which is most common in the appendix where neither perforation due to ingested foreign bodies nor chronic suppurative inflammation is most often found. In this reported case, infected laparotomy wound swab yielded E coli, while there were no symptoms to suggest pre-existing chronic suppurative inflammation. There was no evidence of a penetrating foreign body on history or gross examination of the pathological specimen.
 
Rare occurrence of XGI in the lower gastro-intestinal tract is illustrated by only one reported case in the terminal ileum,2 four reported cases in the colon with two involving the sigmoid colon,3 4 one involving the caecum,5 and one involving the ascending colon.6 However, a histopathological review of 22 interval appendicectomy specimens by Guo and Greenson7 in 2003 reported presence of XGI in eight cases (36.4%) of interval appendicectomy versus none in the 44 matched patients receiving acute appendicectomy, suggesting XGI may be underreported as a delayed consequence of acute inflammation and that these histological changes are secondary to the time interval of inflammation rather than intrinsic factors specific to the patient or disease.
 
Due to endoscopic, radiological, and the intra-operative macroscopic resemblance to infiltrative malignant neoplasms, these lesions warrant excision with a wide margin, similar to treatment of locally advanced malignancies.
 
However, there has been inadequate evidence to suggest association between XGI and gastro-intestinal malignancies. Of the eight cases of XGI of the stomach reported in the literature,8 9 10 11 12 13 co-existence of XGI with gastric cancer was reported in three cases. Histological examination of these cases did not support continuity between the xanthogranuloma and adenocarcinoma. In the other case of XGI in the terminal ileum reported by Yoon et al,2 preoperative endoscopy and biopsy showed ulcers with acute and chronic inflammation only. However, surgical resection was considered unavoidable in view of the radiological findings highly suggestive of appendiceal cancer. While preoperative endoscopic biopsy may not be helpful to exclude malignancy as most of the lesions are submucosal, intra-operative frozen section may be helpful to avoid unnecessary radical surgery.
 
Conclusion
We report a case of XGI with full-thickness involvement of the terminal ileum presenting with a tender intraperitoneal mass. This report aimed to emphasise ileal involvement of XGI, although rare, as one of the differential diagnoses of mass lesions in the small bowel mimicking malignant neoplasms.
 
Declaration
No conflicts of interest were declared by the authors.
 
References
1. Oberling C. Retroperitoneal xanthogranuloma. Am J Cancer 1935;23:477-89. CrossRef
2. Yoon JS, Jeon YC, Kim TY, et al. Xanthogranulomatous inflammation in terminal ileum presenting as an appendiceal mass: case report and review of the literature. Clin Endosc 2013;46:193-6. CrossRef
3. Lo CY, Lorentz TG, Poon CS. Xanthogranulomatous inflammation of the sigmoid colon: a case report. Aust N Z J Surg 1996;66:643-4. CrossRef
4. Oh YH, Seong SS, Jang KS, et al. Xanthogranulomatous inflammation presenting as a submucosal mass of the sigmoid colon. Pathol Int 2005;55:440-4. CrossRef
5. Anadol AZ, Gonul II, Tezel E. Xanthogranulomatous inflammation of the colon: a rare cause of cecal mass with bleeding. South Med J 2009;102:196-9.
6. Dhawan S, Jain D, Kalhan SK. Xanthogranulomatous inflammation of ascending colon with mucosal involvement: report of a first case. J Crohns Colitis 2011;5:245-8. CrossRef
7. Guo G, Greenson JK. Histopathology of interval (delayed) appendectomy specimens: strong association with granulomatous and xanthogranulomatous appendicitis. Am J Surg Pathol 2003;27:1147-51. CrossRef
8. Zhang L, Huang X, Li J. Xanthogranuloma of the stomach: a case report. Eur J Surg Oncol 1992;18:293-5.
9. Guarino M, Reale D, Micoli G, Tricomi P, Cristofori E. Xanthogranulomatous gastritis: association with xanthogranulomatous cholecystitis. J Clin Pathol 1993;46:88-90. CrossRef
10. Lespi PJ. Gastric xanthogranuloma (inflammatory malignant fibrohistiocytoma). Case report and literature review [in Spanish]. Acta Gastroenterol Latinoam 1998;28:309-10.
11. Lai HY, Chen JH, Chen CK, et al. Xanthogranulomatous pseudotumor of stomach induced by perforated peptic ulcer mimicking a stromal tumor. Eur Radiol 2006;16:2371-2. CrossRef
12. Kubosawa H, Yano K, Oda K, et al. Xanthogranulomatous gastritis with pseudosarcomatous changes. Pathol Int 2007;57:291-5. CrossRef
13. Kinoshita H, Yamaguchi S, Sakata Y, Arii K, Mori K, Kodama R. A rare case of xanthogranuloma of the stomach masquerading as an advanced stage tumor. World J Surg Oncol 2011;9:67. CrossRef
14. Rogers S, Slater DN, Anderson JA, Parsons MA. Cutaneous xanthogranulomatous inflammation: a potential indicator of internal disease. Br J Dermatol 1992;126:290-3.
15. Chuang YF, Cheng TI, Soong TC, Tsou MH. Xanthogranulomatous appendicitis. J Formos Med Assoc 2005;104:752-4. CrossRef
 
Find HKMJ in MEDLINE:
 

Generalised involuntary limb twitching after ingestion of Mesobuthus martensii Karsch (Quanxie) powder

DOI: 10.12809/hkmj134091
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Generalised involuntary limb twitching after ingestion of Mesobuthus martensii Karsch (Quanxie) powder
PK Lam, FHKAM (Emergency Medicine), Dip Clin Tox1; TW Wong, FRCSEd, FHKAM (Emergency Medicine)1; YC Chan, FRCSEd, FHKAM (Emergency Medicine)2; Tony WL Mak, FRCPath, FHKAM (Pathology)3
1 Department of Accident and Emergency, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
2 Hong Kong Poison Information Centre, United Christian Hospital, Kwun Tong, Hong Kong
3 Hospital Authority Toxicology Reference Laboratory, Princess Margaret Hospital, Laichikok, Hong Kong
 
Corresponding author: Dr PK Lam (lampkrex@hotmail.com)
 
 Full paper in PDF
Abstract
Mesobuthus martensii Karsch, commonly known as the Chinese scorpion or Manchurian scorpion, has been used in traditional Chinese medicine as Quanxie to treat chronic pain, tetanus, tremors, convulsion, and paralysis for more than a thousand years. We report a case of poisoning after ingestion of a teaspoon of Quanxie powder. The patient presented with chest pain, dizziness, diaphoresis, generalised involuntary limb twitching, and hypertonia around 15 minutes post-ingestion. The patient recovered uneventfully after supportive management. Intravenous diazepam appeared to be effective in alleviating limb twitching. Failure to accurately measure the dose and to boil before consumption may have contributed to his clinical toxicities.
 
 
Case report
A 63-year-old man complained of chest pain, dizziness, and generalised tremors 15 minutes after ingestion of a teaspoon of herbal powder with water in September 2012. He had started taking herbal decoctions prescribed by a registered Chinese medicine doctor 1 month ago because of suboptimal pain control of his trigeminal neuralgia with western medicine. He presented around 2 to 3 hours post-ingestion to our emergency department because of persistent symptoms. He was fully conscious but the limb tremor was so severe that he could barely walk. There was no numbness, headache, or any gastro-intestinal (GI) symptom. Apart from trigeminal neuralgia, he also had a history of ischaemic heart disease and hypercholesterolaemia. The medication on-hand included aspirin, famotidine, simvastatin, metoprolol, isosorbide mononitrate, diclofenac, dihydrocodeine, tramadol, and carbamazepine but he denied overdosing of any of those drugs. He had not taken any other herbs, over-the-counter medicines, or other suspicious foods such as coral reef fish and shellfish.
 
On arrival he was fully conscious with a Glasgow Coma Scale score of 15/15. His vital signs were as follows: blood pressure 126/95 mm Hg, pulse rate 66 beats/min, respiratory rate 18 breaths/min, oxygen saturation by pulse oximetry (SaO2) 99% on supplemental oxygen 2 L/min via a nasal cannula, and tympanic temperature 36.6°C. He appeared nervous with diaphoresis. Both his pupils were 2 mm in size and reactive to light. Cranial nerve examination was unremarkable but generalised involuntary limb twitching with hypertonia was evident. The muscle power in his four limbs was 5/5. Hyperreflexia and bilateral upgoing plantar reflexes were noted; there was no ankle clonus. Cardiovascular examination was unremarkable and his chest was clear. No distended urinary bladder or abnormal bowel sounds were noted. Repeated electrocardiograms showed sinus rhythm with normal axis. First-degree heart block was noted but there were no definite ischaemic changes. The QRS duration and the corrected QT interval were 89 ms and 431 ms, respectively. Chest X-ray revealed marginal cardiomegaly with clear lung field. The spot haemostix level was 6.2 mmol/L. Other blood tests including a complete blood picture, urea and electrolytes, serum calcium level, liver function tests, troponin-I, and arterial blood gas were essentially unremarkable, except a slightly raised creatine kinase (CK) level of 408 IU/L (reference range, 24-180 IU/L), which was likely due to generalised muscle twitching.
 
His chest pain decreased after administering 3 mg of intravenous (IV) morphine. Subsequently, his blood pressure dropped to 66/48 mm Hg but responded to fluid challenge with 500 mL of IV 0.9% normal saline. Less limb twitching was noted after administering 5 mg of IV diazepam. The provisional diagnosis was suspected Chinese herbal medicine (CHM)–related neurotoxicity but at the time of presentation, the formula of the herbal decoction was not available for identifying the culprit. The patient was admitted to the intensive care unit (ICU) for close monitoring in view of the unstable haemodynamic status upon presentation, which may have been the result of CHM toxicity or hypotensive effect of morphine.
 
Seven sheets of CHM prescription formula were subsequently traced back by the patient’s son 3 hours after admission. The Hong Kong Poison Information Centre was consulted for opinion. Multiple ingredients, including Quanxie (全蝎, Mesobuthus martensii Karsch), were prescribed according to the formula. However, the patient had remained free of side-effects in the previous month when he took the herbal decoctions as instructed. Further questioning revealed that the patient had found his pain control unsatisfactory even after taking the herbal decoctions. After receiving verbal advice from his Chinese medicine doctor, he took a few pieces of scorpion from the herb package and put them into a food blender. He took a teaspoon of the powder directly with water; this was the first time he took the herb in this form and fashion. He developed symptoms soon after ingestion.
 
The patient’s twitching decreased gradually after ICU admission but he remained hypertonic, which warranted administering another dose of IV diazepam 2 mg 10 hours after admission. Otherwise, he was fully conscious with a stable haemodynamic status. Computed tomography of the brain was unremarkable. His symptoms gradually resolved and he was discharged from the ICU and transferred to the Emergency Medicine Ward 16 hours after admission. His CK level peaked to 413 IU/L and normalised on day 2. He was discharged 36 hours after admission, and was totally asymptomatic on follow-up 5 days later.
 
The patient’s serum and urine samples, together with the unused herbs and herbal powder, were sent to the Hospital Authority Toxicology Reference Laboratory for further analysis. Poisoning due to other toxic herbs, such as aconitine, strychnine, and matrine was ruled out by liquid chromatography-mass spectrometry of the leftover herbal powder. However, detection of the toxic peptides of M martensii was not possible as the laboratory was not equipped to test for these toxins. The patient’s urine sample revealed the presence of diclofenac, dihydrocodeine, carbamazepine metabolite, salicylic acid and famotidine but these were the usual medications taken by the patient. The serum salicylate level was far below the toxic level. Judging from the history and absence of other toxic alkaloids to explain the symptoms, the diagnosis of this case was compatible with neurotoxicity associated with the consumption of M martensii powder, even though it could not be directly confirmed by chemical analysis.
 
Discussion
Mesobuthus martensii Karsch (synonym: Buthus martensii Karsch), commonly known as Chinese scorpion or Manchurian scorpion (東亞鉗蝎 or 馬氏鉗蝎), belongs to the Buthidae family, and is widely distributed in China. The whole body of the scorpion has been used in traditional Chinese medicine as Quanxie for more than a thousand years (Fig). It functions through the liver meridian, extinguishing wind, and stopping tremors and convulsion. According to the literature in traditional Chinese medicine, common indications include chronic pain, tetanus, tremors, acute/chronic childhood convulsions, paralysis, cerebral vascular accident, and fire toxic nodules.1 Its use is contra-indicated during pregnancy and should be avoided in cases of internal wind with blood deficiency. The recommended dose is 3 to 6 g for herbal decoction2 and 0.5 to 1 g for herbal powder.3
 

Figure. Quanxie (dried Mesobuthus martensii)
 
The venom of M martensii is complex. At least 51 long-chain peptides related to the sodium (Na+) channel toxin family and 18 peptides related to the potassium (K+) channel toxin family have been described4 and more have yet to be discovered. Neurotoxins affecting the Na+ channel consist of α (highly active in mammalian brain) and β (highly active in insects) toxins. Many β toxins, which are not noxious to mammals, were found to have analgesic properties in animal models without the risk of dependence.5 Recently, a novel peptide, BmK-YA, was found to contain an enkephalin-like sequence and can activate the mammalian δ opioid receptor.6 Novel peptides with antiepileptic (eg BmK AEP),7 antitumour (BmK AGAP),8 and antibacterial (BmKn2-7)9 effects in animal models have also been identified in the venom. These findings provide molecular evidence to support its traditional use in Chinese medicine, but relevant clinical studies are still lacking.
 
Although known to be toxic in traditional Chinese medicine, so far, literature on Quanxie poisoning has been rather limited. Many of the reported cases were due to therapeutic overdose,10 which might be related to the way the scorpions are processed. Traditionally, the captured scorpions are put into water for a few hours to allow them to spit out soil from gut, pass retained faeces, and clean the dirt over their bodies. Thereafter they are either boiled with plain water or salt water, resulting in ‘plain’ Quanxie (淡全蝎) and ‘salted’ Quanxie (鹽全蝎), respectively. Boiling kills the scorpion and decreases its toxicity. The addition of salt serves to preserve the processed scorpions for prolonged periods. The majority of the processing is undertaken in scorpion farms and there is a lack of standardised protocol.11 The details of processing vary from place to place, resulting in variable therapeutic effects, even with the same dose. Moreover, many merchants try to add more salt when processing salted Quanxie to increase its weight, for more profit in sale. The salt content in salted Quanxie could be up to 44.82% in the market,12 resulting in inadequate therapeutic effects with the recommended dose. Therefore, many traditional Chinese medicine doctors may opt to use a higher-than-recommended dose to achieve the targeted effect, thus increasing the risk of clinical toxicities.10
 
In our case, it is difficult to estimate the amount of Quanxie actually consumed as the powder had not been accurately weighed before consumption. With a standard teaspoon, the patient could have taken 5 to 6 g of the powder, which is higher than the recommended dose. Failure to boil before ingestion might also have contributed to his clinical toxicities.
 
The clinical features of M martensii (Quanxie) poisoning are summarised in the Table.10 13 14 15 There is no specific antidote, such as anti-venom, for this condition. The mainstay of treatment is supportive. The toxicokinetics of Quanxie have not yet been thoroughly studied. Judging from the rapid onset of clinical symptoms after oral ingestion, we believe that GI absorption is rapid. Gastro-intestinal decontamination with gastric lavage or activated charcoal can be considered if the patient presents within 1 hour of ingestion and has a protected airway. Such a time frame for GI decontamination has also been recommended for other toxic herbs with rapid GI absorption, such as aconitine. Clinicians may choose to consider GI decontamination in patients presenting beyond 1 hour after ingestion but the benefit and risk should be carefully weighed on a case-to-case basis. The benefit would certainly decline with time, which may not justify the risk of aspiration, especially when neurotoxic features such as generalised twitching have already set in, making the administration of activated charcoal further difficult. As Quanxie has not been shown to have enterohepatic circulation or prolonged GI absorption, multi-dose activated charcoal is not recommended. Benzodiazepines appeared effective in alleviating limb twitching muscle spasm in our case but its role in the management of M martensii poisoning remains to be elucidated.
 

Table. Clinical features of Mesobuthus martensii (Quanxie) poisoning10 13 14 15
 
Declaration
No conflicts of interests were declared by authors.
 
References
1. Li N, Yu M, Hu LN, Lin J. Collation of animal drugs — Quanxie [in Chinese]. Jilin J Tradit Chin Med 2009;29:805-6.
2. Committee of National Pharmacopoeia. Chinese pharmacopoeia [in Chinese]. Vol 1. Beijing: Chemical Industry Press; 2010: 133-4.
3. The editorial committee of “Chinese Herbals”, State Administration of Traditional Chinese Medicine. Chinese Materia Medica [in Chinese]. Vol 9. Shanghai: Shanghai Science & Technology Press; 1999: 129-35.
4. Goudet C, Chi CW, Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensii Karsch. Toxicon 2002;40:1239-58. CrossRef
5. Shao JH, Zhang R, Ge X, Yang B, Zhang JH. Analgesic peptides in Buthus martensii Karsch: a traditional Chinese animal medicine. Asian J Tradit Med 2007;2:45-50.
6. Zhang Y, Xu J, Wang Z, Zhang X, Liang X, Civelli O. Bmk-YA, an encephalin-like peptide in scorpion venom. PLoS One 2012;7:e40417. CrossRef
7. Zhou XH, Yang D, Zhang JH, Liu CM, Lei KJ. Purification and N-terminal partial sequence of anti-epilepsy peptide from venom of the scorpion Buthus martensii Karsch. Biochem J 1989;257:509-17.
8. Liu YF, Zhang ZG, Mao YZ, et al. Production and antitumor efficacy of recombinant Buthus martensii Karsch AGAP. Asian J Tradit Med 2009;4:228-33.
9. Cao L, Dai C, Li Z, et al. Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS One 2012;7:e40135. CrossRef
10. Chang JM. Adverse effects of Quanxie [in Chinese]. J China Pharm 2003;14:484-5.
11. Gao ZJ. Brief review of the processing methods of Quanxie [in Chinese]. J Community Med 2006;4:59-60.
12. Shao XH, Kong XS, Fang LH. Processing of Quanxie and its clinical application [in Chinese]. Lishizhen Med Materia Medica Res 2006;17:232-3.
13. Chen XM. Analysis of adverse effects of Quanxie [in Chinese]. Lishizhen Med Materia Medica Res 2003;14:635.
14. Xiao YC. A case report of neurotoxicity induced by centipede and Quanxie [in Chinese]. China J Chin Materia Medica 1996;21:634.
15. Dai Y. A case report of free decoction for treatment of Quanxie [in Chinese]. J Jilin Med Coll 2009;3:342.

An outbreak of refrigerant-induced acute hepatitis in Hong Kong

DOI: 10.12809/hkmj134012
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
An outbreak of refrigerant-induced acute hepatitis in Hong Kong
YM Kan, MB, BS, FHKAM (Medicine); CF Lau, MRCP, FHKAM (Medicine); WC Chan, MRCP; WS Chan, MB, BS, FHKAM (Medicine); YM Tung, MRCP, FHKAM (Medicine); CK Loo, MRCP, FHKAM (Medicine)
Department of Medicine and Geriatrics, Kwong Wah Hospital, Yaumatei, Hong Kong
 
Corresponding author: Dr YM Kan (kanym@ha.org.hk)
 
 Full paper in PDF
Abstract
We report a cluster of acute hepatitis in five air-conditioning maintenance workers following accidental exposure to 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123). They presented to us with complaints of feverishness, generalised malaise, and epigastric discomfort. Their blood biochemistry tests were compatible with acute hepatitis. Viral hepatitis serology, tests for autoimmune hepatitis, and analyses for drugs and alcohol consumption were all negative. No focal hepatic lesion was detected by ultrasound imaging. Percutaneous liver biopsy samples were taken from two of them. The patients were managed with supportive treatment. All had spontaneous, but slow, recovery. Their liver function tests returned to normal after 4 months and their outcomes were favourable. Physicians should be aware of this occupational disease entity.
 
 
Case report
A 30-year-old air-conditioning maintenance worker presented to the Accident and Emergency Department in September 2010 with complaints of feverishness, dry cough, general malaise, poor appetite, and epigastric discomfort for 1 week. His initial symptoms 1 week before included feverishness and dry cough. He took paracetamol (500 mg, 4 times a day for 2 days) after consulting a general practitioner and diagnosed as having acute upper respiratory tract infection. Two days after visiting the general practitioner, he developed general malaise, nausea, and epigastric bloating. He had good past health and his family history was unremarkable. He was a social drinker and his last drink was almost 3 months ago. On physical examination, he was febrile and showed a tinge of jaundice. He was conscious and well-oriented. His pulse rate was 140 beats/min, the blood pressure was 130/75 mm Hg, and his body temperature was 39.3°C. Abdominal examination showed right upper quadrant tenderness but no other sign of acute abdomen; Murphy’s sign was negative.
 
Initial investigation showed elevated blood leukocyte count and mild thrombocytopenia (Table). His liver function tests were deranged and clotting profile was impaired. Serology for hepatitis A, B, C and E, Epstein-Barr virus, and cytomegalovirus was negative. Tests for antinuclear antibodies and anti-smooth muscle antibodies were also negative.
 

Table. Progression of the patient
 
His toxicology screening was negative, except for a serum paracetamol level of 77 mmol/L (taken 6 hours after the last dose of paracetamol). Ultrasound of the abdomen was unremarkable. His liver function tests further deteriorated after admission (Table) and he remained febrile. Computed tomography of the abdomen was then performed, which revealed minimal amount of ascites and non-specific pericholecystic fluid collection.
 
He received intravenous hydration and vitamin K as supportive treatment for his acute hepatitis. He remained fully oriented, and his serum ammonia level was normal.
 
Upon further enquiry, the patient recalled that he experienced dizziness, drunk feeling, and unsteady gait after exposure to a refrigerant during maintenance of an air-conditioning system in a computer server room with an area of around 200 m2. His job was to flush the air-conditioning system and pipeline with a cleansing refrigerant. He said he was not provided with any protective gear. He was, therefore, asked to call his co-workers to see if they had developed similar symptoms.
 
Eight workers worked in rotation for 2 weeks. They were posted to clean and repair the air-conditioning system in an enclosed area without any local exhaust ventilation system. In the first week, they were not provided with any effective protective gears. They worked for 6 hours a day in the first week. In the next week, they were provided with 3M face masks and their work duration shortened to 3 hours a day because they felt dizzy during work and needed to leave the room for a rest. Thus, exposure to leaked refrigerant was estimated to be high in such an enclosed workplace in the absence of effective protective gear. All workers experienced headache, dizziness, unsteady gait, and drunk feeling 15 minutes after exposure to the chemical released. They also had symptoms of dry cough, runny nose, fever, malaise, and loss of appetite a few days later. One of them also noticed passing tea-coloured urine and two had epigastric bloating.
 
Four among his seven co-workers agreed to undertake laboratory investigations. They were all found to have deranged liver function tests compatible with acute hepatitis. All investigations including viral hepatitis serology, tests for autoimmune hepatitis, and analyses for drugs and alcohol consumption were found to be negative. The circumstantial evidence, together with the clinical and laboratory findings, made refrigerant-induced acute hepatitis highly likely in this group of air-conditioning maintenance workers.
 
Percutaneous liver biopsy in one of the affected patients revealed the presence of hepatocytic dropouts and mitotic figures in perivenular distribution. There was moderate lymphocytic infiltrate with scattered eosinophils in the portal areas with mild bile duct proliferation. Perivenular hepatocytic cholestasis was also evident (Fig). These features, coupled with the clinical history and laboratory findings, were in keeping with a diagnosis of hydrochlorofluorocarbons-related hepatitis.
 

Figure. Liver biopsy: hepatocytic dropouts and mitotic figures in perivenular distribution (H&E; original magnification, x 40)
 
However, urine analysis of volatile organic hydrocarbons, metabolites of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123), on day 4 after admission of the index patient, turned out to be negative.
 
Over the following days, our index patient’s symptoms improved progressively. His liver function tests, serum platelet count, and prothrombin time (given by the international normalised ratio) started to improve since day 5 of admission (Table). His coworkers’ symptoms also improved gradually.
 
Four months later, the health conditions of all the workers were confirmed to be normal. Their liver function tests had normalised. All had favourable outcomes.
 
We reported the cases to the Labour Department and the Department of Health since poisoning by halogen derivatives of hydrocarbon of the aliphatic series (ie HCFC-123) is a notifiable occupational disease in Hong Kong.
 
Discussion
HCFC-123 is a common refrigerant. It is one of the major substitutes for ozone-depleting chlorofluorocarbons used mainly as a refrigerant in chillers for industrial air-conditioning and in other applications such as foam blowing, cleansing agents, and industrial solvents. It is a colourless liquid with a light ether-odour and a boiling point of 27.6°C.1
 
Acute exposure to HCFC-123 has been shown to produce severe hepatotoxicity in guinea pigs.2 A single acute exposure to 1000 ppm of HCFC-123 for 4 hours can cause increases in aspartate aminotransferase and alanine aminotransferase levels compatible with hepatocellular necrosis. Increased liver weight, focal liver necrosis, induction of peroxisomal activity and hepatocellular adenomas have been found in subchronic studies in rats and dogs.3
 
The mechanism of hepatotoxicity of HCFC-123 was believed to be similar to that of 1-bromo-1-chloro-2,2,2-trifluoroethane (halothane). Halothane is metabolised to form reactive trifluoroacetyl halide intermediates that can react with water to form trifluoroacetyl haptens which result in direct hepatotoxicity. Since HCFC-123 is metabolised in the same oxidative way as halothane, HCFC-123 exposure might result in direct hepatotoxicity. In animal studies, the relative concentrations of trifluoroacetyl-protein adducts formed in the liver after administration of halothane and HCFC-123 were found to be similar.4 Alternatively, in-vitro metabolic studies of the human liver cytochrome P450 2E1 showed that exposure of human beings to HCFC-123 might result in higher concentrations of trifluoroacetyl-adducted liver proteins than those produced by halothane. The development of autoantibodies against P450 2E1 or P58 arising from immune reactions induced by trifluoroacetyl-adducted liver protein indicates that HCFC-related hepatotoxicity might also be immune-related.3
 
Takebayashi et al1 reported a cluster of acute liver dysfunction among workers exposed to HCFC-123 for less than 5 hours. Nine out of 14 workers developed impairment of liver function tests and symptoms of poor appetite and abdominal pain. Alanine aminotransferase level went up to more than 1700 U/L in these patients, but all had a favourable outcome. By the end of 2 months after HCFC-123 exposure, their liver function tests had returned to normal. This revealed that the incidence of liver dysfunction after HCFC-123 exposure is high.
 
Hoet et al3 investigated an epidemic of liver disease in nine industrial workers who had repeated accidental exposure to a mixture of HCFC-123 and HCFC-124. The results of this study also showed that repeated exposure of humans to HCFCs can result in serious liver injury in a high proportion of the exposed population. The liver biopsy showed hepatocellular necrosis which was prominent in perivenular zone 3, and extended focally across portal tracts and to centrilobular areas. The hepatocyte dropout was well-developed. The leukocytic inflammatory infiltrates in the zones of necrosis were mononuclear. Trifluoroacetyl-adducted proteins were detected in surviving hepatocytes by immunohistochemical staining. Serum autoantibodies against P450 2E1 or P58, which are associated with halothane hepatitis, were also detected. In our index patient, the presence of hepatocytic dropouts, increased mitotic figures and eosinophils might suggest acute hepatitis and liver regeneration after a short period of refrigerant exposure.
 
At moderate levels of exposure to HCFC-123, such as in some occupational accidents or prolonged exposure in poorly ventilated areas, respiratory effects (cough, dyspnoea, and tachypnoea), central nervous system effects (dizziness, drowsiness, weakness, fatigue, numbness, and coma), and gastro-intestinal upsets are characteristic. Hepatic injury (with elevated liver enzymes) and rhabdomyolysis might also rarely occur.5 A retrospective study showed that workers who had exposure to HCFC-123 experienced symptoms related to the central nervous system, gastro-intestinal upset, and irritation of mucous membrane.6 These may include headache, dizziness, abdominal pain, nausea, vomiting, dyspepsia, irritating smell, and eye or throat irritation.6 The prevalence of these symptoms also increased in the high-exposure group. Moreover, the degree and prevalence of liver dysfunction were higher in the high-exposure group.7
 
Urinary concentration of trifluoroacetic acid (TFA), which is a major metabolite of HCFC-123, can be used to determine the degree of HCFC exposure in air. However, in our case, urinary concentration of HCFC metabolite was negative. A small-scale human study found that the concentration of TFA in the urine peaked at 20 to 30 hours, and returned to zero by 96 hours post-exposure.8 Since the urine sample of our index case was collected 4 days after exposure, a positive test would not be expected.
 
There is no specific antidotal treatment for liver injury related to HCFC exposure. Supportive treatment of liver dysfunction is recommended. Fortunately, the outcome of HCFC-related liver dysfunction is usually favourable. All our patients had spontaneous recovery after cessation of exposure. To our knowledge, there is no report of death or liver transplant due to HCFC-123–induced hepatitis.
 
Poisoning by HCFC exposure is a notifiable occupational disease in Hong Kong. We reported this outbreak to the Labour Department and the Department of Health so that the related parties could conduct investigations and recommend appropriate modifications in the relevant working environment. It is essential to implement strict measures to prevent HCFC exposure, and physicians should be aware of the potential toxicities following HCFC exposure.
 
References
1. Takebayashi T, Kabe I, Endo Y, et al. Acute liver dysfunction among workers exposed to 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123): a case report. J Occup Health 1998;40:169-70. CrossRef
2. Marit GB, Dodd DE, George ME, Vinegar A. Hepatotoxicity in guinea pigs following acute inhalation exposure to 1,1-dichloro-2,2,2-trifluoroethane. Toxicol Pathol 1994;22:404-14. CrossRef
3. Hoet P, Graf ML, Bourdi M, et al. Epidemic of liver disease caused by hydrochlorofluorocarbons used as ozone-sparing substitutes of chlorofluorocarbons. Lancet 1997;350:556-9. CrossRef
4. Harris JW, Poul LR, Martin JL, Anders MW. Tissue acylation by the chlorofluorocarbon substitute 2,2-dichloro-1,1,1-trifluoroethane. Proc Natl Acad Sci USA 1991;88:1407-10. CrossRef
5. Concise International Chemical Assessment Document No. 23. Available from: http://www.inchem.org/documents/cicads/cicads/cicad23.htm. Accessed Jun 2014.
6. Takebayashi T, Kabe I, Endo Y, et al. Exposure to 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) and acute liver dysfunction: a causal interference. J Occup Health 1998;40:334-8. CrossRef
7. Boucher R, Hanna C, Rusch GM, Stidham D, Swan E, Vazquez M. Hepatotoxicity associated with overexposure to 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123). AIHA J (Fairfax, Va) 2003;64:68-79. CrossRef
8. Tanaka S, Kabe I, Takebayashi T, et al. Environmental and biological monitoring of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123). J Occup Health 1998;40:348-9. CrossRef

Fluoroquinolone-induced Achilles tendinitis

DOI: 10.12809/hkmj134105
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
CASE REPORT
Fluoroquinolone-induced Achilles tendinitis
PK Tam, MB, BS, FHKAM (Medicine); Carmen TK Ho, MB, BS, FHKAM (Medicine)
Department of Medicine, Tung Wah Hospital, 12 Po Yan Street, Sheung Wan, Hong Kong
 
Corresponding author: Dr PK Tam (alvintam@graduate.hku.hk)
 
 Full paper in PDF
Abstract
We report a case of Achilles tendinitis after intake of ciprofloxacin for treatment of respiratory tract infection. Fluoroquinolone-induced tendinopathy is an uncommon but increasingly recognised adverse effect of this antibiotic class. Most of the cases occur in the Achilles tendon and may lead to tendon rupture. Possible predisposing risk factors include use of steroid, patients with renal impairment or renal transplant, old age, and being an athlete. The drug should be stopped once this condition is suspected. Symptomatic treatment should be given and orthopaedic referral is desirable if tendon rupture occurs.
 
 
Case report
A 59-year-old woman with good past health, except for post-radioiodine hypothyroidism on T4 replacement, had a 3-week history of cough with yellowish sputum but no fever. She visited a general practitioner and was prescribed a course of ciprofloxacin for possible respiratory tract infection. Three days after starting the drug, she noticed pain and swelling over the left heel. She was not on any other medications including steroid. She went hiking regularly and there was no history of trauma. There was no history of joint or tendon problems. On presentation in May 2012, physical examination revealed tenderness and swelling over the left Achilles tendon (Fig 1). Ultrasound revealed Achilles tendinitis with increased flow on power Doppler signal. There were no signs of tear or calcium deposition (Fig 2). Due to the temporal relationship and the absence of other obvious causes, the diagnosis was ciprofloxacin-induced Achilles tendinitis (the Naranjo Scale was 7, ie probable adverse drug reaction).1 Ciprofloxacin was stopped and the patient was advised to avoid hiking until symptoms subsided completely. She recovered fully 2 weeks later.
 

Figure 1. Swollen left Achilles tendon (arrow)
 

Figure 2. Ultrasound shows thickened Achilles tendon (arrow) with increased flow on colour Doppler examination
 
Discussion
Fluoroquinolone-induced tendinopathy was first reported in 19832 and, since then, more than 100 cases have been reported in the literature. A case-control study from Italy found that use of fluoroquinolone was associated with higher risk of tendon disorders as well as Achilles tendon rupture (odds ratios, 1.7 and 4.1, respectively) compared with the control population.3 Another case-control study done in the United Kingdom estimated the risk to be 3.2 cases per 1000 patient-years.4
 
The commonest fluoroquinolones in the reported cases included ciprofloxacin and pefloxacin but, essentially, all the commonly used fluoroquinolones such as levofloxacin, ofloxacin, and norfloxacin have been associated with this adverse event.
 
Achilles tendon is the commonest affected site, accounting for nearly 90% of the reported cases. Other tendons like quadriceps tendon, rotator cuff tendon, as well as the site of tendon insertion may also be affected (there were two cases of epicondylitis reported after quinolone use).5 Tendinitis was the commonest pathology, present in 83.7% of the cases. Tendon rupture occurred in about 40% of the patients.6 A case-control study found that patients taking fluoroquinolones had a 4-fold increased risk of Achilles tendon rupture compared with the general population.3 Other complications related to tendinitis, such as carpal tunnel syndrome, are also possible.7
 
The mean time of symptom onset was about 2 weeks after initiation of the culprit medication, although it could range from 2 hours to as long as 6 months and, in 50% of the cases, it started within 6 days of drug intake. The mean age of affected subjects was 59 years.6
 
Several risk factors have been identified in the development of tendinopathy in patients taking fluoroquinolones. Among them, steroid use was the most significant risk factor. Most of the time, this was related to long-term use of systemic steroids, although even inhaled steroids were thought to be associated with the development of quinolone-induced tendinopathy.8 Other risk factors include old age (>60 years old), haemodialysis, renal impairment, renal transplant recipients, participation in sports activities, and history of rheumatic disorders.6 9 One previous review stated that males were more likely to develop this side-effect.6 One more recent case-crossover study, however, found that the association of tendinopathy and fluoroquinolone use was stronger in females, although not statistically significant.10 Therefore, it is not sure whether a particular gender is more likely to have this problem.
 
The underlying pathophysiology of the tendinopathy is not entirely known. A number of possible mechanisms have been proposed in animal and in-vitro studies. Ciprofloxacin could affect the metabolism of fibroblasts in tendon structures by reducing collagen synthesis and increasing extracellular matrix degradation.11 The chelating property of fluoroquinolones may also disturb the physiological interaction between cells and extracellular matrix.12 There was also evidence that fluoroquinolone increased apotosis in human tenocytes.13 In renal transplant recipients, the clearance of the drug may be impaired resulting in elevated concentrations in the tendon structures. Other risk factors like age, repeated trauma due to sports activities, or steroid therapy may impair the repair process of the tendon, thus, increasing the risk of tendinopathy in this group of patients.6 14
 
The tendinopathy usually presents with acute or subacute onset of pain and swelling over the tendon. Together with a history of recent consumption of fluoroquinolones and absence of other obvious causes of the tendinopathy, the diagnosis can be established. Imaging like ultrasound or magnetic resonance imaging is not mandatory but can aid in diagnosis, especially for visualising deep structures. Typical ultrasound findings of tendinopathy include thickened tendon with increased flow on colour Doppler examination.
 
The most important step in management is to stop the culprit drug. Appropriate rest and pain control are important. Pain can be well-controlled by non-steroidal anti-inflammatory agents; non-pharmacological treatments include ice therapy and therapeutic ultrasound. In case of tendon rupture, early referral to orthopaedic surgeon is desirable. Treatment options include immobilisation with casting or operative repair.
 
Prevention is also very important. One should only use fluoroquinolones when really necessary. Our patient’s symptoms did not suggest genuine lower respiratory tract infection; therefore, prescription of antibiotics was indeed not indicated. Moreover, quinolone is not the recommended first-line empirical antibiotic for treatment of chest infection in Hong Kong (it should only be considered in patients who are sensitive to penicillin or macrolide group of antibiotics). When use of antibiotics is really deemed necessary, fluoroquinolones should be avoided in patients with risk factors. Those with a history of fluoroquinolone-related tendinopathy should not be prescribed drugs of this class. We should also avoid co-prescription with steroid. If no better alternative is available, patients should be warned of this potential adverse effect and advised to stop the drug and seek medical advice if there are symptoms suggestive of tendinopathy. Athletes who are prescribed with fluoroquinolones should be advised to alter their training regimen (reduction in high-intensity and ballistic activities, decrease in total training volume) during the course of the antibiotics.14
 
References
1. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;30:239-45. CrossRef
2. Bailey RR, Kirk JA, Peddie BA. Norfloxacin-induced rheumatic disease. N Z Med J 1983;96:590.
3. Corrao G, Zambon A, Bertù L, et al. Evidence of tendinitis provoked by fluoroquinolone treatment: a case control study. Drug Saf 2006;29:889-96. CrossRef
4. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HG, Stricker BH. Fluoroquinolones and risk of Achilles tendon disorders: case-control study. BMJ 2002;324:1306-7. CrossRef
5. Le Huec JC, Schaeverbeke T, Chauveaux D, Rivel J, Dehais J, Le Rebeller A. Epicondylitis after treatment with fluoroquinolone antibiotics. J Bone Joint Surg Br 1995;77:293-5.
6. Khaliq Y, Zhanel GG. Fluoroquinolone-associated tendinopathy: a critical review of the literature. Clin Infect Dis 2003;36:1404-10. CrossRef
7. Liang VY, Ghearing GR, Zivkovic SA. Carpal tunnel syndrome after ciprofloxacin-induced tendinitis. J Clin Neuromuscul Dis 2010;11:165-6. CrossRef
8. Schwald N, Debray-Meignan S. Suspected role of ofloxacin in a case of arthralgia, myalgia, and multiple tendinopathy. Rev Rhum Engl Ed 1999;66:419-21.
9. Tsai WC, Yang YM. Fluoroquinolone-associated tendinopathy. Chang Gung Med J 2011;34:461-7.
10. Wise BL, Peloquin C, Choi H, Lane NE, Zhang Y. Impact of age, sex, obesity, and steroid use on quinolone-associated tendon disorders. Am J Med 2012;125:1228.e23-1228.e28.
11. Williams RJ 3rd, Attia E, Wickiewicz TL, Hannafin JA. The effect of ciprofloxacin on tendon, paratenon and capsular fibroblast metabolism. Am J Sports Med 2000;28:364-9.
12. Shakibaei M, Pfister K, Schwabe R, et al. Ultrastructure of Achilles tendons of rats treated with ofloxacin and fed a normal or magnesium-deficient diet. Antimicrob Agents Chemother 2000;44:261-6. CrossRef
13. Sendzik J, Shakibaei M, Schäfer-Korting M, Stahlmann R. Fluoroquinolones cause changes in extracellular matrix, signalling proteins, metalloproteinases and caspase-3 in cultured human tendon cells. Toxicology 2005;212:24-36. CrossRef
14. Hal MM, Finnoff JT, Smith J. Musculoskeletal complications of fluoroquinolones: guidelines and precautions for usage in the athletic population. PM R 2011;3:132-42. CrossRef

Pages