Electrocardiographic abnormalities and cardiovascular physiology seen in athletic overtraining

ABSTRACT

Hong Kong Med J 1995;1:155-60 | Number 2, June 1995
REVIEW
Electrocardiographic abnormalities and cardiovascular physiology seen in athletic overtraining
A King Jr, AYS Lo, MK Chin, JX Li, RCH So
Philippine Center for Sports Medicine, Rizal Memorial Sports Complex, Vito Cruz Street, Malate, Metro Manila, Philippines
 
 
The overtraining syndrome describes the condition in which an athlete suffers from various complications resulting from overtraining. These typically include overuse injuries, mood disturbances and blood chemistry changes. Although there is no gold-standard criterion for diagnosing this syndrome, the best current indicators include prolonged fatigue, impaired athletic performance and psychological changes. This article aims to provide some insights into the physiology of overtraining, with emphasis on its cardiovascular consequences. Impaired cardiac function may occur after prolonged exercise, and is documented by depressed left ventricular function and decreased myocardial oxygen ventilation rates. Electrocardiographic abnormalities which may be seen in overtraining are T wave inversions, ST segment depressions and various arrhythmias. Well-conditioned athletes may also manifest the same abnormalities as a result of physiological cardiac hypertrophy. Electrocardiography and two-dimensional echocardiography should form an integral part of the screening performed by any sports medicine department overseeing the training of athletes.
 
Key words: Electrocardiography; ECG; Athletic injuries; Sports; Cardiovascular system physiology
 
View this abstract indexed in MEDLINE:
 

Basic concepts of bioavailability

ABSTRACT

Hong Kong Med J 1995;1:63-8 | Number 1,March 1995
REVIEW
Basic concepts of bioavailability
RC Li, AHL Chow, MS Yip, K Raymond
Department of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
 
 
Although scientific evaluations for product bioavailability performance have been routinely employed in most European and North American countries, debate continues on the potential problems in bioavailability and bioequivalency of pharmaceutical products in Hong Kong. Data obtained from these evaluations not only confirms the quality of the drug products in the market, but also permit a more rational selection of pharmaceutical products to achieve cost-effectiveness. It is well known that chemical equivalency may not necessarily imply bioequivalency due to the interplay of various formulation, pathophysiological and physicochemical factors. This paper will discusses some of the basic concepts and implications of these evaluations.
 
Key words: Bioavailability; Bioequivalency; Definitions; Pharmacokinetic parameters
 
View this abstract indexed in MEDLINE:
 

Lateral epicondylalgia: midlife crisis of a tendon

Hong Kong Med J 2014;20:145–51 | Number 2, April 2014 | Epub 28 Feb 2014
DOI: 10.12809/hkmj134110
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
REVIEW ARTICLE
Lateral epicondylalgia: midlife crisis of a tendon
James KH Luk, FHKCP, FHKAM (Medicine)1; Raymond CC Tsang, MScHC (PT), PDPT2; HB Leung, FHKCOS, FHKAM (Orthopaedic Surgery)3
1 Department of Medicine and Geriatrics, Fung Yiu King Hospital, 9 Sandy Bay Road, Pokfulam, Hong Kong
2 Physiotherapy Department, MacLehose Medical Rehabilitation Centre, 7 Sha Wan Drive, Pokfulam, Hong Kong
3 Department of Orthopaedics and Traumatology, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong
 
Corresponding author: Dr James KH Luk (lukkh@ha.org.hk)
Abstract
The pathogenesis and management of lateral epicondylalgia, or tennis elbow, a common ailment affecting middle-aged subjects of both genders continue to provoke controversy. Currently it is thought to be due to local tendon pathology, pain system changes, and motor system impairment. Its diagnosis is usually clinical, based on a classical history, as well as symptoms and signs. In selected cases, additional imaging (X-rays, ultrasound, and magnetic resonance imaging) can help to confirm the diagnosis. Different treatment modalities have been described, including the use of orthotics, non-steroidal anti-inflammatory drugs, steroid injections, topical glyceryl trinitrate, exercise therapy, manual therapy, ultrasound therapy, laser therapy, extracorporeal shockwave therapy, acupuncture, taping, platelet-rich plasma injections, hyaluronan gel injections, botulinum toxin injections, and surgery. Nevertheless, evidence to select the best treatment is lacking and the choice of therapy depends on the experience of the management team, availability of the equipment and expertise, and patient response. This article provides a snapshot of current medical practice for lateral epicondylalgia management.
 
 
Introduction
Tennis elbow is a diagnosis often heard in the community and usually associated with an uncomplicated clinical course. Surprisingly though, this minor self-limiting ailment is linked to much controversy with respect to nomenclature, pathophysiology, and management.
 
The term ‘tennis elbow’ was first used by Rungue in 1873.1 It also appeared in an 1883 paper by Major called ‘Lawn-tennis elbow’.2 The name tennis elbow is itself a misnomer as it appears to be at least as common in non-tennis players.3 In the literature there are many names used to describe the condition, including lateral epicondylalgia (LE), lateral epicondylitis, lateral epicondylosis, shooter’s elbow, archer’s elbow, and simply lateral elbow pain. In the remainder of this article, the name ‘lateral epicondylalgia’ will be used. By definition, LE is a degenerative tendinopathy characterised by pain at the lateral epicondyle, aggravated by resisted muscle contraction of the extensor carpi radialis brevis (ECRB).4 Studies in western countries usually report an annual incidence of 4 to 7 per 1000 inhabitants, and at any given time it is said to affect 1 to 3% of individuals in the general population.5 Men and women seem to be equally predisposed to and the age of onset is usually between 35 and 55 years. A literature search yielded no epidemiological data pertaining to Hong Kong, China, or other Asian countries.
 
The typical duration of symptoms is between 6 and 24 months; up to 90% of sufferers report recovery within 1 year. However, 5 to 10% patients develop chronic symptoms and eventually undergo invasive treatment such as surgery.
 
The injury is usually attributed to eccentric contractions of the ECRB during backhand tennis swings, which leads to repetitive microtrauma resulting in tears at its origin.6 Others suggest that direct trauma to the lateral aspect of the elbow, hypovascularity, and fluoroquinolone antibiotics may also be involved.7 8
 
It is common to believe that tennis players are those most commonly affected by this condition. However, any behaviour or activity associated with overuse of underused and atrophied tendons can lead to LE.9 Indeed, many LE patients are not tennis players but subjects who have been sedentary for years, and then suddenly begin exercising (gardening, decorating a room, caring and lifting a baby, carrying heavy luggage).
 
Pathophysiological model of lateral epicondylalgia
Three interactive components seem to play a part in its pathophysiology, namely: local tendon pathology, pain system changes, and motor system impairment.10 11 The pathological changes in the tendon consist of angiofibroblastic hyperplasia with an increase in cell number and ground substance, vascular hyperplasia or neovascularisation, increased concentrations of neurochemicals, as well as disorganised and immature collagen formation. Ultrasonography (USG) has demonstrated different tendon pathology, including tendon thickening or thinning, focal areas of hypoechogenicity, tendon tears, calcification, and even bony irregularity.12 Doppler USG in LE patients has also demonstrated neovascularisation. The current view is that it is not an inflammation and hence the old term epicondylitis is a misnomer.13 Clinically, inflammation is only present during the very early stage of the disease and is very mild. On the contrary, there is a consistent absence of inflammatory cells, suggesting that the process is not an inflammatory process.
 
Change in pain perception (or the pain system) may also contribute to the pathophysiology of LE. It has been shown that substance P, a potent pain modulator, is located at the ECRB tendon.14 Moreover, LE is itself associated with hyperalgesia and increased response to noxious stimuli. Indeed, hyperalgesia can occur bilaterally and not be confined to the affected side.15 Furthermore, spread of reduced pain threshold beyond the LE site has been reported, especially over the cervical spine. Previous studies have actually reported a high prevalence of neck pain in patients with this condition.16
 
Motor system impairment consists of diminished strength, with morphological changes in muscle and altered motor control.17 It has been reported that both maximum hand grip and pain-free grip are decreased, with the latter being considered more sensitive to assess LE and thence recommended as a clinical outcome measure. Patients with LE may have unilateral or bilateral handgrip weakness. Specific muscle strength deficits, including weakness in the wrist, hand, and shoulder have been demonstrated. At the histological level, moth-eaten fibres, fibre necrosis, signs of muscle fibre regeneration, and an increased proportion of fast muscle fibre types are found in the ECRB.18
 
Understanding the pathophysiology of LE may enable better targeting of treatment. The three model components mentioned above probably operate differently in different patients. Some patients with LE may have more pain system disturbance, while others may have more local tendon pathology. Clinicians should identify the relative involvement of local pathology, pain, and motor system dysfunction in each patient with LE. This may enable treatment strategies to be targeted better.
 
Clinical presentation, physical examination, and investigation
The classical description is pain at the lateral aspect of the elbow that often radiates down the forearm. The patient may recall a specific injury, but often the pain is gradual and of insidious onset. Weakness in grip or difficulty in carrying items in the hand is common and affects quality of life to a certain extent, depending on the severity of symptoms.
 
Physical examination should not be restricted to the affected elbow. Clinicians should begin with cervical spine, followed by entire upper limb, and careful examination of the shoulder. In the elbow, there will be tenderness at the lateral epicondyle, slightly distal to the extensor mass. The specific test includes the Thomson manoeuvre, in which pain is elicited by resisted wrist extension with the elbow in full extension and the forearm in pronation.19 Several other provocative tests aid in the diagnosis of LE, including the Chair test, the Bowden test, Cozen’s test, and Mill’s test.20 These tests cause pain over the lateral epicondyle by putting the ECRB in either eccentric contraction or passive tensioning. One should beware of radial nerve entrapment which affects 5% of LE patients, in which case pain may occur during resisted supination when the nerve is trapped within the supinator muscle. The middle finger extension test, resisted supination of the forearm, local anaesthetic radial tunnel block, the Rule-of-Nine test, and nerve conduction studies have all been described to help in the diagnosis of radial tunnel syndrome.21 22 23 24 However, diagnosis of radial nerve entrapment may be difficult when associated with LE. The elbow joint should also be checked for stability, range of movement, signs of arthritis, and joint effusion. Hand grip strength on the two sides has to be compared and the readings documented. The elbow is usually X-rayed to rule out other conditions. In about 25% of the patients, calcification is present in the soft tissues around the lateral epicondyle.25 If USG is available, it can detect tendon pathology, while Doppler USG may be able to demonstrate neovascularisation. Further investigations, such as magnetic resonance imaging, are usually unnecessary, unless there is serious concern about other articular pathology.26
 
Treatment and outcome measurement
To date, a standardised, universally accepted programme for LE treatment has not been established. Nor is there a consensus as to what outcomes to measure, which makes comparison of different treatment modalities difficult, if not impossible. Common outcomes evaluated in the literature include pain gauged by a visual analogue scale, hand grip strength, and pain-free grip strength. One validated outcome evaluation tool is the Patient-rated Forearm Evaluation Questionnaire, which has been translated into a Hong Kong Chinese version.27 This questionnaire has been updated by the originator and is called the Patient-rated Tennis Elbow Evaluation.28 Since no treatment protocol has been scientifically shown to be superior to others, more than 40 different therapeutic options have been offered to LE patients. To a large extent therefore, the choice depends on experience, expertise, and equipment at any given clinic or centre. Although treatment plans for LE vary in different centres, patient education is usually one of the important core elements.
 
Evidence about different treatment options
Non-steroidal anti-inflammatory drugs
Non-steroidal anti-inflammatory drugs (NSAIDs) can reduce pain but do not improve long-term outcome, and certainly they have their well-known side-effects, including gastro-intestinal bleeding and impairment of renal function. There is a theoretical risk of impaired tendon healing, as inflammation is important for granulation tissue, collagen growth, and tendon repair. Topical NSAIDs have been claimed to be beneficial for pain relief in some small studies lasting up to 4 weeks.29 As mentioned in a recent Cochrane review, evidence about the benefits of oral NSAIDs has been conflicting and no direct comparisons between oral and topical NSAIDs are available.30 Although there is evidence that NSAIDs are more effective than placebo for pain control, it is insufficient to support their routine use in LE.
 
Corticosteroid injection
Corticosteroid injection is an effective short-term means of achieving pain relief. However, their use for the treatment of LE has been increasingly discouraged, partly because no long-term benefit accrues, and partly due to high recurrence rates. It is reported that 72% of patients treated with steroid injections experience a recurrence within 12 months, compared with 9% in those treated with a wait-and-see strategy.31 One recent study also demonstrated a recurrence rate as high as 34.7% in a steroid injection group.32 Another newly published randomised controlled trial shows that steroid injections result in lower rates of complete recovery compared to placebo and a greater 1-year recurrence rate.33 Theoretically, such injections can impair tendon healing, as inflammation is important for granulation tissue formation, collagen growth, and tendon repair.34 Hence, the use of corticosteroid injections for LE is a poor choice and should be avoided as far as possible even as initial treatment.
 
Topical glyceryl trinitrate
Interestingly, glyceryl trinitrate (GTN) can act as an agent to stimulate tendon healing. It is usually given as a GTN patch, stuck directly over the site of the LE (presumably for its psychological effect). Its side-effects include headache, dizziness, and skin irritation. In 2003, Paoloni et al35 reported a 21% greater effect in LE when GTN (1.25 mg/24 hours) was combined with exercise than with exercise alone. In 2009, the same investigators also reported a significant decrease in LE pain after 8 weeks of topical GTN (0.72 mg/24 hours).36 In 2011, McCallum et al37 followed up 58 patients treated for 6 months with topical GTN or placebo combined with a rehabilitation programme, but 5 years after discontinuation of therapy there was no difference in terms of pain and hand grip strength. These findings suggest that topical GTN did not offer additional long-term benefit.
 
Exercise therapy
Exercise is believed to stimulate tendon remodelling and produce muscular adaptive responses. Various resistance exercises have been prescribed to such patients, including isometric, isokinetic, and isotonic concentric or eccentric exercises. A recent systematic review38 including 10 studies of moderate quality and two studies of high quality supported the use of isotonic eccentric exercise for LE with moderate evidence of efficacy. It suggested that an eccentric exercise programme performed as three sets of 10 to 15 repetitions daily for about 6 to 12 weeks had the best supporting evidence as a means of reducing pain, improving function and pain-free grip strength, though optimal dosing was yet to be determined.38 A recent meta-analysis showed that stretching plus strengthening exercises give better results than ultrasound plus friction massage alone.39
 
Manual therapy
Deep transverse friction massage (DTFM) relies on the theory of analgesia mediated via nonopioid descending pain inhibitory mechanisms. According to the Cochrane Library review, DTFM combined with other physiotherapy modalities was no better than physiotherapy alone for pain control, improvement of grip strength, and functionality.40
 
There are numerous manual therapy or manipulation techniques, variously named as Mills, Cyriax, Kaltenborn, Mennell, Stoddard, Hartman, Maitland, and Mulligan.41 Their rationale, indications, and how they are applied vary. A more recent systematic review based on four randomised controlled trials of moderate-to-high quality found that Mulligan’s manual mobilisation with movement provides better outcomes, such as pain-free hand grip strength over the short and long term when compared to placebo or other treatments such as ultrasound with exercise.42
 
Taping
The use of taping in LE is equally controversial and no firm conclusions can be drawn at this moment. Vicenzino et al43 compared diamond-shaped taping over placebo and found significant improvement in the intervention group in terms of the pressure pain threshold. However, other benefits were not demonstrated.
 
Ultrasound therapy
Recourse to ultrasound is commonly offered to LE patients, especially in the initial phase as it is readily available in most physiotherapy centres and is safe. Lundeberg et al44 reported that compared to placebo the pain of LE patients was better 3 months after such treatment, but there was no difference in global improvement. One study compared ultrasound to acupuncture and found that both yielded improvements in all outcome measures, but there was no difference between the groups.45 Due to the paucity of high-quality trials at this time, it is difficult to draw any conclusion to support or refute the use of ultrasound in LE.
 
Extracorporeal shockwave therapy
Derived from lithotripsy, extracorporeal shockwave therapy (ESWT) has been applied in orthopaedic treatment since 1987. The principle is to use shockwave technology to dissolve calcified deposits in diseased tendons.46 Lasting analgesia in the treated region has also been observed. Achilles, quadriceps, triceps, and supraspinatus are common ‘head upwards’ tendinopathies treated with ESWT. However, it is known that calcification is rare in tendons that head downwards, such as those involved in LE. So why and how ESWT works in LE is unclear. The most accepted theory is that the microtrauma from repeated shockwaves to the affected area creates neovascularisation into the area and promotes tissue healing.47 Because re-inflammation is being induced, patients should not take anti-inflammatory medication, nor should they ice the area, but simple analgesics (such as paracetamol) may be acceptable. To date, the US Food and Drug Administration has only approved this treatment for plantar fasciitis and LE.48 Haake et al49 performed a placebo-controlled study entailing 3 weeks of ESWT versus placebo, but could not demonstrate any difference in outcomes, but more side-effects (reddening of skin and small haematomas) were reported with active treatment. In Hong Kong, a randomised controlled trial of 74 patients failed to demonstrate the beneficial effects of ESWT compared to placebo,50 as did another double-blind randomised controlled trial.51
 
Laser therapy
A recent systematic review and meta-analysis showed that laser therapy with an optimal dose of 904-nm wavelength applied to the extensor tendon insertions at the lateral elbow appears to provide short-term pain relief and reduce disability in LE, both alone and in combination with exercise therapy.52
 
Orthotics
Different commercially available ‘tennis elbow’ orthotics are being sold in stores. Most are in the form of tennis elbow braces made of neoprene material, and are not expensive. Whether they are useful is still not known. Jensen et al53 compared an off-the-shelf orthotic with steroid injections and concluded that both were similarly effective in early management. Wuori et al54 compared off-the-shelf orthotics with placebo braces and could not demonstrate any difference. Garg et al55 reported that for patients with LE, a wrist extension splint can allow a greater degree of pain relief than a forearm strap brace. The message of the Cochrane Library is that due to the limited number of trials, few outcome measures, and limited long-term results, no definite conclusions on their effectiveness can be drawn.56
 
Acupuncture
Acupuncture is a contemporary treatment modality for any type of painful condition, and LE is of no exception.57 Molsberger and Hille58 found that acupuncture could achieve pain relief for a longer period than placebo. Another study by Fink et al59 found that reduction in pain compared to placebo only occurred early after treatment but there was no difference after 2 months. Thus, there appears to be some evidence to support the efficacy of acupuncture over placebo, but the effect is not long-lasting.
 
Platelet-rich plasma injections
The use of platelet-rich plasma (PRP) injections has created a plethora of hope for curing LE. The patient’s own blood is drawn and centrifuged, and the buffy coat layer rich in platelet is isolated and injected into the patient. The PRP is rich in platelet-derived growth factors which are chemoattractive for white blood cells and mesenchymal stem cells. It also contains transforming growth factor–beta, which promotes cell mitosis and increases type I collagen production in tendon sheath fibroblasts. It also has vascular endothelial growth factor that stimulates angiogenesis. These factors have been shown to be important in tendon repair.60 One randomised trial compared PRP injections with corticosteroid injections and reported superior cure rates and pain scores after PRP treatment.61 Currently, a large-scale study to evaluate the effectiveness of PRP is awaited, before definitive recommendations can be made for routine use. Regrettably, PRP treatment is not cheap and its cost-effectiveness is therefore an important consideration.
 
Hyaluronan gel injection and botulinum toxin
Hyaluronan gel injection is used in conditions such as osteoarthritis. A recent randomised controlled trial showed that for LE, it was superior to placebo injections.62 How it works is unclear but could be linked to effects on tendon degeneration; tendon being similar to cartilage, may derive benefit in LE akin to that in osteoarthritis. By contrast, injection of botulinum toxin into the extensor digitorum longus muscle of the third and fourth fingers to paralyse the muscle can unload the extensor tendon and help the patient recover from LE.63 Its disadvantage is that the patient cannot extend the third and fourth fingers for many months, which is disabling. It may be considered in patients with severe LE symptoms who do not want or are not suitable for surgery.
 
Surgery
It is estimated that about 4 to 11% patients ultimately undergo surgery.64 The usual indications include intractable symptoms, persistent symptoms despite conservative management (typically for at least 12 months). Many surgical procedures have been reported, including extensor release with intra-articular modifications, extensor fasciotomy, V-Y slide of the common extensor tendon, denervation of the lateral epicondyle, epicondylar resection with anconeus muscle transfer, and the Garden procedure with lengthening of the ECRB.65 66 Minimally invasive techniques are also available. It is beyond the scope of this review to describe each of these surgical procedures in detail. Regardless of the technique, successful treatment usually relies on patient selection, identification of pathology, and complete resection of the ECRB tendinosis. To date, evidence in support of surgery in LE is lacking, and the Cochrane Library has classified surgical treatment as having insufficient evidence to support or refute its use.67
 
Conclusion
Tennis elbow, or LE, is a common yet challenging condition to treat. Various non-surgical modalities have been described, the selection of which depends on experience of the management team, availability of the equipment, available expertise, and patient choice/response. In general, treatment can begin with patient education, application of commonly available treatments (physiotherapy, manual therapy, tennis elbow brace, as well as oral or topical NSAIDs). Steroid injection is not recommended as it lacks long-term benefit and is associated with a high relapse rate. When usual treatments fail to resolve symptoms, injection of PRP may be an option, but its efficacy and cost-effectiveness are not yet established. Injection of hyaluronate may also be tried before resorting to surgery. Surgery is usually indicated for resistant patients not responsive to non-surgical therapy. More research is needed to evaluate the best treatment modalities and protocols for LE sufferers.
 
References
1. Thurston AJ. Conservative and surgical treatment of tennis elbow: a study of outcome. Aust N Z J Surg 1998;68:568-72. CrossRef
2. Major HP. Lawn-tennis elbow [letter]. BMJ 1883;2:557.
3. Shiri R, Viikari-Juntura E, Varonen H, Heliövaara M. Prevalence and determinants of lateral and medial epicondylitis: a population study. Am J Epidemiol 2006;164:1065-74. CrossRef
4. Orchard J, Kountouris A. The management of tennis elbow. BMJ 2011;342:d2687. CrossRef
5. Walker-Bone K, Palmer KT, Reading I, Coggon D, Cooper C. Prevalence and impact of musculoskeletal disorders of the upper limb in the general population. Arthritis Rheum 2004;51:642-51. CrossRef
6. Riek S, Chapman AE, Milner T. A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clin Biomech (Bristol, Avon) 1999;14:477-83. CrossRef
7. Le Huec JC, Schaeverbeke T, Chauveaux D, Rivel J, Dehais J, Le Rebeller A. Epicondylitis after treatment with fluoroquinolone antibiotics. J Bone Joint Surg Br 1995;77:293-5.
8. Schneeberger AG, Masquelet AC. Arterial vascularization of the proximal extensor carpi radialis brevis tendon. Clin Orthop Relat Res 2002;(398):239-44. CrossRef
9. Viikari-Juntura E, Kurppa K, Kuosma E, et al. Prevalence of epicondylitis and elbow pain in the meat-processing industry. Scand J Work Environ Health 1991;17:38-45. CrossRef
10. Coombes BK, Bisset L, Vicenzino B. A new integrative model of lateral epicondylalgia. Br J Sports Med 2009;43:252-8. CrossRef
11. Fredberg U, Stengaard-Pedersen K. Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand J Med Sci Sports 2008;18:3-15. CrossRef
12. Connell D, Burke F, Coombes P, et al. Sonographic examination of lateral epicondylitis. AJR Am J Roentgenol 2001;176:777-82. CrossRef
13. Khan KM, Cook JL, Kannus P, Maffulli N, Bonar SF. Time to abandon the "tendinitis" myth. BMJ 2002;324:626-7. CrossRef
14. Uchio Y, Ochi M, Ryoke K, Sakai Y, Ito Y, Kuwata S. Expression of neuropeptides and cytokines at the extensor carpi radialis brevis muscle origin. J Shoulder Elbow Surg 2002;11:570-5. CrossRef
15. Coombes BK, Bisset L, Vicenzino B. Thermal hyperalgesia distinguishes those with severe pain and disability in unilateral lateral epicondylalgia. Clin J Pain 2012;28:595-601. CrossRef
16. Berglund KM, Persson BH, Denison E. Prevalence of pain and dysfunction in the cervical and thoracic spine in persons with and without lateral elbow pain. Man Ther 2008;13:295-9. CrossRef
17. Pienimäki T, Tarvainen T, Siira P, Malmivaara A, Vanharanta H. Associations between pain, grip strength, and manual tests in the treatment evaluation of chronic tennis elbow. Clin J Pain 2002;18:164-70. CrossRef
18. Ljung BO, Lieber RL, Fridén J. Wrist extensor muscle pathology in lateral epicondylitis. J Hand Surg Br 1999;24:177-83. CrossRef
19. Van Hofwegen C, Baker CL 3rd, Baker CL Jr. Epicondylitis in the athlete's elbow. Clin Sports Med 2010;29:577-97. CrossRef
20. Buckup K. Clinical tests for the musculoskeletal system: examinations-sign-phenomena. 2nd ed. Stuttgart: NY Thieme; 2008: 129-33.
21. Roles NC, Maudsley RH. Radial tunnel syndrome: resistant tennis elbow as a nerve entrapment. J Bone Joint Surg Br 1972;54:499-508.
22. Lister GD, Belsoe RB, Kleinert HE. The radial tunnel syndrome. J Hand Surg Am 1979;4:52-9. CrossRef
23. Ritts GD, Wood MB, Linscheid RL. Radial tunnel syndrome. A ten-year surgical experience. Clin Orthop Relat Res 1987;219:201-5.
24. Loh YC, Lam WL, Stanley JK, Soames RW. A new clinical test for radial tunnel syndrome—the Rule-of-Nine test: a cadaveric study. J Orthop Surg (Hong Kong) 2004;12:83-6.
25. Edelson G, Kunos CA, Vigder F, Obed E. Bony changes at the lateral epicondyle of possible significance in tennis elbow syndrome. J Shoulder Elbow Surg 2001;10:158-63. CrossRef
26. Tuite MJ, Kijowski R. Sports-related injuries of the elbow: an approach to MRI interpretation. Clin Sports Med 2006;25:387-408, v. CrossRef
27. Leung HB, Yen CH, Tse PY. Reliability of Hong Kong Chinese version of the Patient-rated Forearm Evaluation Questionnaire for lateral epicondylitis. Hong Kong Med J 2004;10:172-7.
28. Macdermid J. Update: The Patient-rated Forearm Evaluation Questionnaire is now the Patient-rated Tennis Elbow Evaluation. J Hand Ther 2005;18:407-10. CrossRef
29. Burnham R, Gregg R, Healy P, Steadward R. The effectiveness of topical diclofenac for lateral epicondylitis. Clin J Sport Med 1998;8:78-81. CrossRef
30. Pattanittum P, Turner T, Green S, Buchbinder R. Nonsteroidal anti-inflammatory drugs (NSAIDs) for treating lateral elbow pain in adults. Cochrane Database Syst Rev 2013;(5):CD003686.
31. Bisset L, Beller E, Jull G, Brooks P, Darnell R, Vicenzino B. Mobilisation with movement and exercise, corticosteroid injection, or wait and see for tennis elbow: randomised trial. BMJ 2006;333:939. CrossRef
32. Mardani-Kivi M, Karimi-Mobarakeh M, Karimi A, et al. The effects of corticosteroid injection versus local anesthetic injection in the treatment of lateral epicondylitis: a randomized single-blinded clinical trial. Arch Orthop Trauma Surg 2013;133:757-63. CrossRef
33. Coombes BK, Bisset L, Brooks P, Khan A, Vicenzino B. Effect of corticosteroid injection, physiotherapy, or both on clinical outcomes in patients with unilateral lateral epicondylalgia: a randomized controlled trial. JAMA 2013;309:461-9. CrossRef
34. Behrens SB, Deren ME, Matson AP, Bruce B, Green A. A review of modern management of lateral epicondylitis. Phys Sportsmed 2012;40:34-40. CrossRef
35. Paoloni JA, Appleyard RC, Nelson J, Murrell GA. Topical nitric oxide application in the treatment of chronic extensor tendinosis at the elbow: a randomized, doubleblinded, placebo-controlled clinical trial. Am J Sports Med 2003;31:915-20.
36. Paoloni JA, Murrell GA, Burch RM, Ang RY. Randomised, double-blind, placebo-controlled clinical trial of a new topical glyceryl trinitrate patch for chronic lateral epicondylosis. Br J Sports Med 2009;43:299-302. CrossRef
37. McCallum SD, Paoloni JA, Murrell GA. Five-year prospective comparison study of topical glyceryl trinitrate treatment of chronic lateral epicondylosis at the elbow. Br J Sports Med 2011;45:416-20. CrossRef
38. Raman J, MacDermid JC, Grewal R. Effectiveness of different methods of resistance exercises in lateral epicondylosis—a systematic review. J Hand Ther 2012;25:5-26. CrossRef
39. Hoogvliet P, Randsdorp MS, Dingemanse R, Koes BW, Huisstede BM. Does effectiveness of exercise therapy and mobilisation techniques offer guidance for the treatment of lateral and medial epicondylitis? A systematic review. Br J Sports Med 2013;47:1112-9. CrossRef
40. Brosseau L, Casimiro L, Milne S, et al. Deep transverse friction massage for treating tendinitis. Cochrane Database Syst Rev 2002;(4):CD003528.
41. Vicenzino B. Lateral epicondylalgia: a musculoskeletal physiotherapy perspective. Man Ther 2003;8:66-79. CrossRef
42. Herd CR, Meserve BB. A systematic review of the effectiveness of manipulative therapy in treating lateral epicondylalgia. J Man Manip Ther 2008;16:225-37. CrossRef
43. Vicenzino B, Brooksbank J, Minto J, Offord S, Paungmali A. Initial effects of elbow taping on pain-free grip strength and pressure pain threshold. J Orthop Sports Phys Ther 2003;33:400-7. CrossRef
44. Lundeberg T, Abrahamsson P, Haker E. A comparative study of continuous ultrasound, placebo ultrasound and rest in epicondylalgia. Scand J Rehabil Med 1988;20:99-101.
45. Davidson J, Vandervoort A, Lessard L, et al. The effect of acupuncture versus ultrasound on pain level, grip strength and disability in individuals with lateral epicondylitis: a pilot study. Physiother Can 2001;53:195-202.
46. Furia JP. High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am J Sports Med 2006;34:733-40. CrossRef
47. Ko JY, Chen HS, Chen LM. Treatment of lateral epicondylitis of the elbow with shock waves. Clin Orthop Relat Res 2001;(387):60-7. CrossRef
48. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012;7:11. CrossRef
49. Haake M, König IR, Decker T, et al. Extracorporeal shock wave therapy in the treatment of lateral epicondylitis: a randomized multicenter trial. J Bone Joint Surg Am 2002;84-A:1982-91.
50. Leung HB, Yen CH, Yip C, Tse PY. A prospective randomized double-blinded controlled study on extracorporeal shockwave therapy for lateral epicondylitis. Hong Kong J Orthop Surg 2002;6(Suppl):S12.
51. Staples MP, Forbes A, Ptasznik R, Gordon J, Buchbinder R. A randomized controlled trial of extracorporeal shock wave therapy for lateral epicondylitis (tennis elbow). J Rheumatol 2008;35:2038-46.
52. Bjordal JM, Lopes-Martins RA, Joensen J, et al. A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskelet Disord 2008;9:75. CrossRef
53. Jensen B, Bliddal H, Danneskiold-Samsøe B. Comparison of two different treatments of lateral humeral epicondylitis—"tennis elbow". A randomized controlled trial [in Danish]. Ugeskr Laeger 2001;163:1427-31.
54. Wuori JL, Overend TJ, Kramer JF, MacDermid J. Strength and pain measures associated with lateral epicondylitis bracing. Arch Phys Med Rehabil 1998;79:832-7. CrossRef
55. Garg R, Adamson GJ, Dawson PA, Shankwiler JA, Pink MM. A prospective randomized study comparing a forearm strap brace versus a wrist splint for the treatment of lateral epicondylitis. J Shoulder Elbow Surg 2010;19:508-12. CrossRef
56. Struijs PA, Smidt N, Arola H, van Dijk CN, Buchbinder R, Assendelft WJ. Orthotic devices for the treatment of tennis elbow. Cochrane Database Syst Rev 2002;(1):CD001821.
57. Trinh KV, Phillips SD, Ho E, Damsma K. Acupuncture for the alleviation of lateral epicondyle pain: a systematic review. Rheumatology (Oxford) 2004;43:1085-90. CrossRef
58. Molsberger A, Hille E. The analgesic effect of acupuncture in chronic tennis elbow pain. Br J Rheumatol 1994;33:1162-5. CrossRef
59. Fink M, Wolkenstein E, Karst M, Gehrke A. Acupuncture in chronic epicondylitis: a randomized controlled trial. Rheumatology (Oxford) 2002;41:205-9. CrossRef
60. Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med 2003;33:381-94. CrossRef
61. Mishra AK, Skrepnik NV, Edwards SG, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a doubleblind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med 2013 Dec 12. Epub ahead of print.
62. Petrella RJ, Cogliano A, Decaria J, Mohamed N, Lee R. Management of tennis elbow with sodium hyaluronate periarticular injections. Sports Med Arthrosc Rehabil Ther Technol 2010;2:4. CrossRef
63. Wong SM, Hui AC, Tong PY, Poon DW, Yu E, Wong LK. Treatment of lateral epicondylitis with botulinum toxin: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2005;143:793-7. CrossRef
64. Nirschl RP, Pettrone FA. Tennis elbow. The surgical treatment of lateral epicondylitis. J Bone Joint Surg Am 1979;61:832-9.
65. Rose NE, Forman SK, Dellon AL. Denervation of the lateral humeral epicondyle for treatment of chronic lateral epicondylitis. J Hand Surg Am 2013;38:344-9. CrossRef
66. Tosti R, Jennings J, Sewards JM. Lateral epicondylitis of the elbow. Am J Med 2013;126:357.e1-6. CrossRef
67. Buchbinder R, Johnston RV, Barnsley L, Assendelft WJ, Bell SN, Smidt N. Surgery for lateral elbow pain. Cochrane Database Syst Rev 2011;(3):CD003525.

Current management of acute scaphoid fractures: a review

Hong Kong Med J 2014;20:52–8 | Number 1, February 2014 | Epub 9 Dec 2013
DOI: 10.12809/hkmj134146
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
REVIEW ARTICLE
Current management of acute scaphoid fractures: a review
Jason PY Cheung, MB, BS, MMedSc; Chris YK Tang, MB, BS; Boris KK Fung, FRCS, FCRCE (Ortho)
Department of Orthopaedics and Traumatology, University of Hong Kong Medical Centre, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
 
Corresponding author: Dr JPY Cheung (jcheung98@hotmail.com)
Abstract
The aim of this review was to present currently available evidence on the management of acute scaphoid fractures. Acute scaphoid fractures are usually diagnosed by a combination of history, physical examination, and radiography. However, in many patients scaphoid fractures are still missed. Thus, the general trend is to over-treat patients with a suspicion of scaphoid fracture. Many aspects of scaphoid fracture management are still controversial and different institutions vary in their approach.
 
 
 
Introduction
 
Scaphoid fractures have been extensively investigated in the past. They are the most common type of carpal fractures and are usually found in young men,1 accounting for 2 to 7% of all fractures, and 70 to 80% of carpal fractures.2 Scaphoid fractures affecting the waist (70%) are the commonest type in adults, followed by distal pole fractures (10-20%), proximal pole fractures (5-10%), and tubercle fractures (5%).2 Conversely, 52% of all scaphoid fractures in children involve the tubercle, 33% affect the distal third, and 15% affect the waist,2 though this discrepancy may be partially accounted by the fact that children’s scaphoids are not fully ossified in their proximal pole, making a waist fracture look like a proximal pole fracture. Scaphoid fractures are commonly prone to complications due to delayed treatment or misdiagnosis. Avascular necrosis is particularly common, with estimated rates of 13 to 50%.3 Other complications such as nonunion, malunion, carpal instability, and radiocarpal arthrosis are also frequently seen. Thus, early diagnosis and treatment are critical for a better prognosis.
 
Acute scaphoid fractures can be difficult to diagnose. According to some studies, the prevalence of true fractures among patients with suspected scaphoid fractures may only be 5 to 10%.1 Multiple radiographs may not be able to pick up all scaphoid fractures and consequently, clinicians attempt to avoid undertreatment by liberal use of cast immobilisation. However, overtreating patients results in a loss of work days and productivity and increased health care costs,1 and it is conjectured that 76 to 100% of such cases undergo inappropriate initial immobilisation.4
 
Undisplaced scaphoid fractures are not benign injuries and warrant prolonged plaster cast immobilisation or early osteosynthesis. Clinicians should have a high index of suspicion and must be meticulous in studying the clinical examination findings and radiographs.
 
Anatomy
The scaphoid forms the bridge to the distal carpal row (trapezium, trapezoid, and capitates) and the proximal row (proximal pole to the lunate) by a ligamentous network including the scapholunate interosseous ligament and extrinsic palmar ligaments. The scaphoid can be simply divided anatomically into the proximal pole, the waist, and the distal pole. Its surface is mostly (80%) covered by articular cartilage.5 The articular surfaces include the proximal pole articulation with the radius and lunate and the distal pole articulation with the capitate, trapezium, and trapezoid.
 
Being predominantly articular, the blood supply to the scaphoid has limited access. Branches from the radial artery (dorsoradial arteries) form arches at the dorsal wrist capsule and enter the scaphoid at its dorsal ridge. This provides 70 to 80% of the blood supply to the scaphoid.3 5 The other 20 to 30% are supplied by the superficial palmar arch or branches of the radial artery that reach the distal palmar area of the scaphoid.3 5 Thus, the proximal pole depends solely on intraosseous blood flow and fractures here have a high risk of osteonecrosis associated with a prolonged period of healing. An average of 3 to 6 months are required for healing in these fracture types and nonunion is quoted to ensue in 5 to 10%.3 Additional nutrient arteries supply the distal pole via the area of the scaphotrapezium ligamentous attachment.
 
Biomechanics
The usual mechanism of injury is a forced dorsiflexion wrist injury such as a fall on outstretched hand. Cadaveric studies have shown that fractures occur when the wrist is kept in 95 to 100 degrees of extension and a dorsiflexion load is applied to the radial half of the wrist with the radioscaphocapitate ligament kept as the fulcrum.5 Failure in compression occurs on the dorsal side of the bone and failure in tension on the palmar side. Dorsal angulation of the fracture is caused by opposing rotational moments on the proximal and distal poles of the scaphoid. Furthermore, dorsal intercalated segmental instability (DISI) ensues if the proximal carpal row is in extension. Bending forces to wrist fractures are resisted by intact scaphoid-carpal ligaments.6 Distal pole and tubercle fractures are due to direct impact and forced ulnar deviation causes avulsion fractures at radial collateral ligament attachments.
 
Assessment
Classical examination findings of tenderness at the anatomic snuffbox and the volar aspect of the distal tuberosity and positive scaphoid compression test (pain on axial compression of the thumb metacarpal) raise suspicions that warrant further investigation. A study by Unay et al7 suggested that pain during thumb-index pinching (sensitivity 73%, specificity 75%, positive predictive value 96%, and negative predictive value 23%) and pain during forearm pronation (sensitivity 79%, specificity 58%, positive predictive value 82%, and negative predictive value 54%) aid the diagnosis of scaphoid fractures, but are absent in 27% of cases. Overall, the specificity for clinical examination shown in the literature was only 74 to 80%3 and the mean positive predictive value was quoted to be only 21%.8 Other physical findings that may help to diagnose scaphoid fractures include limitation in end arc of motion with flexion and radial deviation, and reduced grip strength.
 
Nonunion can be found in up to 12% in cases of missed scaphoid fractures.3 Therefore, scaphoid fractures must be identified early and immobilised appropriately. Imaging techniques can aid in the diagnosis of occult fractures. Plain film radiography can detect a fracture in 70 to 90% of cases.8 Four views are necessary: posterior-anterior (PA) wrist, lateral wrist with extended fingers, anterior-posterior (AP) wrist with flexed fingers (scaphoid lies parallel to the film with flexed fingers), and the wrist in 25 to 45 degrees supination with flexed fingers.9 Neutral or ulnar-deviated PA films do not show waist fractures well, because the axis of the scaphoid is flexed towards the beam and the tubercle overhangs the body. Fractures of the dorsal sulcus are best demonstrated on a 45-degree PA oblique view, and proximal pole fractures on a 45-degree AP oblique view.2 Scaphoid waist fractures are best seen on an ulnar-deviated PA view with 20 degrees of elbow flexion.2 The semipronated oblique view visualises the waist of the scaphoid best, but multiple views such as PA, lateral and ulnar-deviated and clenched-fist views may be required to make a correct diagnosis.9 Lateral X-rays may only detect tuberosity and distal third fractures,10 but are also essential to show the carpal alignment and distal radioulnar joint alignment. A proper view should show a co-linear capitate and radius, with the pisiform located between the distal pole of the scaphoid and the body of the capitate.3
 
Other adjuvant imaging techniques may be required to diagnose scaphoid fractures. Computed tomography (CT) is usually used to identify fractures and nonunions and for preoperative planning, and it is better for detecting occult fractures of the cortex with a mean sensitivity of 94% and specificity of 96%.1 It was found to have a mean negative predictive value of 99% in a study by Ty et al,11 which means it is very unlikely to miss a scaphoid fracture. Furthermore, CT is readily available in urgent care settings and is more cost-effective than magnetic resonance imaging (MRI).
 
Magnetic resonance imaging has a mean sensitivity of 98% and specificity of 99%.1 It can locate trabecular fractures and help identify other causes of wrist pain if a fracture is not found, besides helping to determine the vascularity of the proximal pole preoperatively. It is especially useful in diagnosing proximal pole fractures, which may develop avascular necrosis. Acute fractures show normal or decreased T1 and increased T2 intensity.3 Nonunion and impaired vascularity are often seen with low T1 and T2 marrow signal intensity which correlates with poor healing.3 Notably, MRI is more sensitive in detecting occult scaphoid fractures, with fewer false-positives than bone scans.3 Thus, it can accurately exclude patients without scaphoid fractures and facilitate discontinuing immobilisation. For planning the management of cases of scaphoid nonunion, MRI can be used following internal fixation, as the bone marrow signal can be assessed even in the presence of a titanium alloy screw.12
 
Scaphoid fractures are commonly associated with injuries to the carpal ligament or triangular fibrocartilage complex, and reported in 35% of affected patients and intercarpal soft tissue injury may ensue in 86% of instances.13 Usually these conditions can be treated conservatively as mild ligament tears heal without long-term complications. However, carpal ligament injuries may lead to symptomatic chronic carpal instability. Thus, surgical fixation and early mobilisation may be indicated in more severe cases. In the most serious cases, scaphoid fractures can constitute part of the abnormality in perilunate or lunate dislocations of the wrist. Identifying and assessment of these injuries can be performed with a wrist arthrogram or arthroscopy. Besides soft tissue injuries, distal radial fractures are also found quite commonly due to shared mechanisms of injury.
 
Classification
Herbert’s classification system is the most well-known and commonly used, as it defines stable and unstable fractures. Type A fractures are stable acute fractures; type B are unstable acute fractures; type C are delayed unions (>6 weeks of plaster immobilisation), and type D are established nonunions (fibrous or sclerotic). Stable fractures include fractures of the tubercle (A1) and incomplete fracture of the waist (A2). Type B fractures are acute unstable fractures. These include subtypes B1 (oblique fractures of the distal third of the scaphoid), B2 (displaced or mobile complete fractures of the waist), B3 (proximal pole fractures), B4 (fracture dislocations), and B5 (comminuted fractures).14
 
Treatment
Treatment of acute scaphoid fractures is controversial and each centre has different criteria for conservative versus operative treatment. In patients with a suspected fracture but no obvious findings on X-rays, most centres advocate joint immobilisation before repeat imaging for reassessment at a later time. However, casting makes exclusion of fracture and determination of fracture union by follow-up X-rays more difficult, for which reason follow-up CT may be warranted. Fixation is suggested if the MRI shows a proximal pole fracture.3 Since cartilage covers 80% of the scaphoid, no fracture callus can be made to stabilise the fracture site during healing6 and thus rigid fixation is mandatory. Healing on the X-ray is inferred from disappearance of the fracture line, spot welding between fracture fragments, or callus formation. With these findings, immobilisation can be discontinued and patients can be allowed a gradual return to activities.
 
Treatment depends primarily on the location and degree of displacement. Distal pole fractures are usually due to avulsion of the scaphoid tuberosity or impaction of the distal articular surface. These fractures have a good vascular supply that enables rapid healing in 4 to 6 weeks with a short arm thumb spica cast.5 Traditionally, undisplaced, stable waist fractures are treated in short-or long-arm casts. These often involve prolonged immobilisation of up to 12 weeks.3 Union can be achieved in greater than 90% of affected individuals.5 However, recent evidence suggests improved results with operative fixation. Prolonged immobilisation disrupts collagen homeostasis resulting in loss of normal connective tissue characteristics, allowing tendons to glide and the joint capsule to stretch.
 
Non-operative
Some studies suggest a further 6 weeks of immobilisation before offering operative fixation if at 6 weeks the CT shows an unhealed fracture.3 Others suggest that most fractures of the scaphoid waist unite after 8 weeks of immobilisation but may require as long as 12 weeks.15 Overall scaphoid waist fractures can unite satisfactorily in 85 to 95% of patients.16 Scaphoid fractures are generally immobilised in a scaphoid cast (proximal phalanx of thumb in palmar abduction leaving the interphalangeal joint free) or a Colles’ cast (exposing the thenar eminence and leaving the metacarpophalangeal joint free). Pinch grip function is impaired in scaphoid casts; the Colles’ cast allows for greater overall range of thumb movement and improved function.17 The fine pinch grip of the thumb should be preserved as much as possible, for which Colles’ casting rather than scaphoid casting offers better preservation of function.17 However, there are no data on the longterm results of fracture healing following these two types of casting.
 
The wrist position during immobilisation has also been investigated. Hambidge et al18 showed that the frequency of nonunion was not influenced by the position of immobilisation (P=0.46) and 108 of 121 fractures united after 12 weeks of immobilisation. However, wrists immobilised in 20-degree flexion results in less extension at the 6-month follow-up.18 A possible explanation was that immobilisation in flexion may have produced increased flexion stress on the fracture, causing a humpback deformity, which restricts wrist extension and causes persistent pain.18 An alternative explanation for restricted extension could be related to soft-tissue injury, joint adhesions, or contracture of the palmar capsule at the wrist.18 Immobilisation in a Colles’ cast with the wrist in 20-degree extension is therefore recommended.18
 
Long-arm versus short-arm casting is controversial. Biomechanical studies in cadavers show fracture site motion during forearm rotation.5 Forearm rotation leads to excessive scaphoid fracture motion, which may impair bone healing. Excessive motion is an indication for long-arm casting to restrict forearm rotation and to reduce the associated displacement of bone fragments. Displacement of more than 1 mm is associated with instability and is an indication for open reduction and internal fixation.19 A cadaveric study on scaphoid waist fractures by Kaneshiro et al20 showed that significant fracture site motion could occur with forearm rotation in a short-arm thumb spica cast. Some forearm rotation may even occur when long-arm casting is used, but the displacement should be less than 0.5 mm.20 Thus, long-arm casting is recommended.
 
As mentioned above, most studies suggest immobilisation for 8 to 12 weeks for scaphoid waist fractures.15 16 17 18 21 Geoghegan et al15 showed that 89% of undisplaced scaphoid fractures achieved union by 4 weeks and mobilisation could begin at that time. Allowing mobilisation with a wrist splint at week 4 can reduce the period of disability associated with nonoperative treatment.15 Böhler et al9 showed a 96% healing rate in 580 undisplaced scaphoid waist fractures with 6 weeks of immobilisation with a simple unpadded dorsal fist plaster splint that includes the thumb. The hand needs to be kept in neutral position when using the dorsal plaster splint.9
 
Nonoperative treatment is successful in achieving union but there are disadvantages of immobilisation, namely stiffness, diminished grip strength, and delayed return to work. Pseudoarthrosis ensues in approximately 4% of patients who only have casting, and is usually associated with vertical oblique fracture patterns (due to tilting and shearing forces) and diastasis between bone fragments.9 Young and active patients are unlikely to tolerate several months of immobilisation due to the pressures of work or athletics. Currently, therefore, there is a trend towards operative management to reduce the number of days of inactivity.
 
Operative
In theory, early internal fixation has the benefits of early return of wrist movement, a higher rate of union, an early return to work and sport, and avoiding the need for a plaster cast. Reduction of the fracture in anatomical alignment is vital for good results. If reduction cannot be achieved by closed means, open reduction is necessary. Usually simple hyperextension of the wrist can achieve good reduction. In addition, Moser et al22 suggested having the arm in extension during surgery to maintain the reduction. Percutaneous fixation of the fracture limits the risk of devascularising fracture fragments and protects the ligaments and volar capsule. However, for percutaneous fixation to be feasible, the fracture must not be displaced or reducible by closed means. On the contrary, there is no controversy about treating displaced scaphoid fractures by open reduction and internal fixation.5 Surgical stabilisation allows the patient to perform early range of motion exercises and avoids prolonged immobilisation.
 
In the literature, evidence in favour of surgery is not overwhelming. A meta-analysis by Bhandari and Hanson23 showed that internal fixation resulted in a significantly earlier return to work (by 8 weeks) as compared with casting. However, both methods did not differ in terms of outcomes such as grip strength (P=0.24) and range of motion (P=0.67).23 Furthermore, the risk of nonunion was also found to be similar (P=0.28).23 Similarly, Saedén et al21 showed that a follow-up period of up to 12 years after the fracture revealed no difference in pain or discomfort between the operative and conservative treatments. Dias et al24 had similar results in terms of grip strength and range of movement after follow-up for 93 months. However, McQueen et al25 showed that percutaneous screw fixation attained quicker union (9 vs 14 weeks, P<0.001) for treatment of Herbert types B1 and B2 fractures of the scaphoid waist.
 
The two usual approaches for percutaneous fixation of scaphoid fractures involve volar traction assistance and the dorsal minimal incision (manual reduction with a guidewire as a joystick technique or arthroscopy-assisted reduction). In the volar technique, the wrist is extended over a towel roll to allow proper insertion of the guidewire. Yip et al26 suggested the 45-degree supination oblique view when determining the length of the screw and avoiding over-penetration into the radioscaphoid joint space. The headless screw must be fully buried beneath the articular cartilage of the proximal scaphoid, so as to avoid radioscaphoid impingement. Scaphoid fixation is best accomplished with the longest screw placed in the distal scaphoid poles.6 Bone density is greatest in the scaphoid poles, where it provides the best fixation.6 Fractures of the distal two thirds can also be approached volarly, as this approach avoids injury to the dorsal blood supply. The volar technique is contra-indicated in proximal pole and oblique fractures, as the screw cannot cross the fracture line perpendicularly to obtain adequate compression and purchase.27 This leads to displacement of the fracture. During surgery, the scaphoid is in a flexed posture relative to the longitudinal alignment of the distal radius. From the volar approach, the proximal point to aim at is the proximal ulnar corner of the scaphoid at the insertion of the scapholunate ligament.28 The starting point of the surgery is at the scaphotrapezial joint through the proximal thenar muscles. Besides a small terminal branch of the radial nerve, the operation is at a safe distance from the median nerve motor branch and from the radial artery. The drawback of volar surgical approaches is the difficulty in obtaining fracture reduction, which may therefore result in nonunion of proximal scaphoid pole fractures.6 The trapezium is in a position that blocks wire placement volarly, and therefore placing a guidewire along the central scaphoid axis is difficult such that the screw can also penetrate the joint.6
 
For the dorsal approach, the distal point aimed at is the centre of the scaphotrapezial joint or the base of the thumb. Thus, this allows for a more central placement in the distal pole.28 The dorsal approach provides direct unobstructed access to the proximal pole permitting the placement of a central axis guidewire for screw implantation. There is better fracture fixation as the purchase of the screw threads in the proximal fragment tends to be greater.29 However, the disadvantages of this technique include poor exposure to the distal third of the scaphoid, damage to the articular cartilage of the proximal pole of scaphoid, potential entrapment of the extensor tendons, damage to the dorsal ligaments, and risk of vascular injury.29 30 Moreover, to insert the screw through the most proximal part, the wrist has to be fully flexed during the procedure.29 Flexing the wrist may cause the distal fragment to adopt a flexed posture and cause the proximal fragment to follow the lunate into an extended posture, producing the hump-back deformity.29 Distal pole fractures can present technical difficulties for insertion of a volar screw perpendicular to the fracture line and are therefore best suited for fixation using the dorsal fixation technique.27
 
Arthroscopy can assist fracture reduction, and real-time mini-fluoroscopy can guide the dorsal percutaneous insertion of a headless compression screw.6 Arthroscopic examination can also permit assessment of concurrent ligamentous injuries and demonstrate osteochondral fragments at the midcarpal row.6 Thus, arthroscopic-assisted surgery can treat both scaphoid fractures and carpal ligament injuries.31 Arthroscopy also preserves the key ligaments and blood supply, allowing for immediate hand rehabilitation.32
 
Complications
Up to 20% of patients may endure residual pain despite a normal grip strength and wrist movement after surgery.33 These persistent symptoms can be due to intra-operative articular cartilage damage. Damage affects the distal scaphoid-radial styloid joint first, and later progresses to the scaphocapitate and capitolunate joints. Osteoarthritis occurred in 5% of patients with a history of a scaphoid fracture despite normal healing,34 but usually did not present until several decades after injury. The opening of the scaphotrapezial joint for screw insertion during surgery may result in the development of osteoarthritis.21
 
Malunion of the scaphoid may produce a flexion (humpback) deformity with ulnar deviation and pronation of the distal fragment. Flexion deformity within the scaphoid causes loss of extension at the radiocarpal and midcarpal joints. Amadio et al35 showed that only 27% of patients with interscaphoid angles of >35 degrees had satisfactory results in terms of pain, function, movement, and strength. This contrasts with 83% of the patients having satisfactory results with interscaphoid angles of <35 degrees.35
 
It is accepted that for a scaphoid fracture, 6 months must elapse before a diagnosis of nonunion can be made. Such patients endure pain and poor function; in 35% lateral wrist X-rays yielded a humpback deformity (due to flexion angulation between the proximal and distal scaphoid poles) of patients,4 and 42% showed DISI.4 In a review of 104 patients with symptomatic nonunion, all of them developed osteoarthritis.36 Fibrous union is visualised as irregularity at the fracture line, while in pseudoarthrosis the two bone halves move independently causing articular damage to the radial facet.33 Displacement of the nonunion with the incongruent cartilaginous surfaces and carpal instability also contributes to the development of osteoarthritis.4 Many now advocate internal fixation and the use of bone grafting for the treatment of established nonunion. Bone healing usually occurs (in about 75% of cases) but there may be persistent humpback deformity (16%), associated DISI deformity (12%), and osteonecrosis (4%).4 Nevertheless, late osteoarthritis is inevitable and cannot be avoided, even by this operation.33 This is an expected consequence of the disease process due to cartilage destruction. The main predictor of healing or failure was the time elapsed between the initial fracture and the treatment of the established nonunion. A delay of 5 years or more would decrease the success rate to only 62%.4
 
Complications of open repair include hypertrophic scarring, avascular necrosis, carpal instability, donor site pain, bone graft infection, screw protrusion, and reflex sympathetic dystrophy.6 28 Due to the cartilaginous surface and fracture healing being an intraosseous process, open fixation of a fractured scaphoid may further jeopardise the blood supply of the scaphoid and drain away the fracture haematoma.26 The radiocarpal ligaments may also be damaged during open surgery.26 These complications may be avoided using a minimally invasive arthroscopic approach.6
 
Our centre’s practice
When a patient is admitted with the clinical suspicion of a scaphoid fracture (mechanism of injury, tenderness at the anatomical snuffbox) but no obvious fracture line seen on X-rays, we provide the patient with a short-arm scaphoid cast and then order a CT. The CT includes a coronal view to better screen for any fracture. If no fracture is evident, a soft splint is given for pain relief.
 
For an undisplaced non-comminuted waist fracture, we offer conservative treatment with a short-arm scaphoid cast for 6 weeks with interval X-ray monitoring. Casting is kept for up to 4 to 8 weeks if the fracture line is still seen before surgery is considered. We rarely perform surgery in this patient group because we attained a 95% union rate in compliant patients. In distal pole fractures, the healing is generally quite good and we rarely resort to excision.
 
We recommend surgery for all other types of fracture alignment to prevent nonunion. We generally use Herbert screws or cannulated screws, subject to the surgeon’s preference. We almost always use the percutaneous approach unless the reduction cannot be obtained well. We use a volar approach antegrade from the scaphoid tubercle as we try to avoid the dorsal approach to prevent cartilage injury. We, however, do use the dorsal approach for proximal pole fractures. The success rate is about 95% for percutaneous fixations and 85 to 90% for open reductions.
 
For rehabilitation, we allow free mobilisation on postoperative day 1 in waist fractures if the fixation is rigid; we keep a slab for 2 weeks if the fracture fixation is doubtful. We nevertheless allow supervised gentle mobilisation for these fractures. In proximal pole fractures, the purchase is usually doubtful and we immobilise the wrist for 4 weeks.
 
In cases of nonunion, a plain MRI is helpful for the assessment of avascular necrosis as these conditions may require additional procedures such as grafting. This condition is found in our hospital 12 to 18 times a year, and is always due to late referrals or improper primary management including casting for displaced waist fractures.
 
Conclusions
The current literature indicates no standard treatment for scaphoid fractures. Different centres have different approaches to the treatment of scaphoid fractures and the evidence on which they rely is controversial. However, the current trend is to treat scaphoid fractures operatively, so as to limit the number of days away from work and to allow patients to regain function sooner.
 
References
1. Yin ZG, Zhang JB, Kan SL, Wang XG. Diagnosing suspected scaphoid fractures: a systematic review and meta-analysis. Clin Orthop Relat Res 2009;468:723-34. Crossref
2. Shenoy R, Pillai A, Hadidi M. Scaphoid fractures: variation in radiographic views—a survey of current practice in the West of Scotland region. Eur J Emerg Med 2007;14:2-5. Crossref
3. Adams JE, Steinmann SP. Acute scaphoid fractures. Orthop Clin North Am 2007;38:229-35, vi. Crossref
4. Schuind F, Haentjens P, Van Innis F, Vander Maren C, Garcia-Elias M, Sennwald G. Prognostic factors in the treatment of carpal scaphoid nonunions. J Hand Surg Am 1999;24:761-76. Crossref
5. Puopolo SM, Rettig ME. Management of acute scaphoid fractures. Bull Hosp Jt Dis 2003;61:160-3.
6. Slade JF 3rd, Gillon T. Retrospective review of 234 scaphoid fractures and nonunions treated with arthroscopy for union and complications. Scand J Surg 2008;97:280-9.
7. Unay K, Gokcen B, Ozkan K, et al. Examination tests predictive of bone injury in patients with clinically suspected occult scaphoid fracture. Injury 2009;40:1265-8. Crossref
8. Brookes-Fazakerley SD, Kumar AJ, Oakley J. Survey of the initial management and imaging protocols for occult scaphoid fractures in UK hospitals. Skeletal Radiol 2009;38:1045-8. Crossref
9. Böhler L, Trojan E, Jahna H. The results of treatment of 734 fresh, simple fractures of the scaphoid. J Hand Surg Br 2003;28:319-31. Crossref
10. Cheung GC, Lever CJ, Morris AD. X-ray diagnosis of acute scaphoid fractures. J Hand Surg Br 2006;31:104-9. Crossref
11. Ty JM, Lozano-Calderon S, Ring D. Computed tomography for triage of suspected scaphoid fractures. Hand (N Y) 2008;3:155-8. Crossref
12. Ganapathi M, Savage R, Jones AR. MRI assessment of the proximal pole of the scaphoid after internal fixation with a titanium alloy Herbert screw. J Hand Surg Br 2001;26:326-9. Crossref
13. Wong TC, Yip TH, Wu WC. Carpal ligament injuries with acute scaphoid fractures—a combined wrist injury. J Hand Surg Br 2005;30:415-8. Crossref
14. Herbert TJ, Fisher WE. Management of the fractured scaphoid using a new bone screw. J Bone Joint Surg Br 1984;66:114-23.
15. Geoghegan JM, Woodruff MJ, Bhatia R, et al. Undisplaced scaphoid waist fractures: is 4 weeks’ immobilisation in a below-elbow cast sufficient if a week 4 CT scan suggests fracture union? J Hand Surg Eur Vol 2009;34:631-7. Crossref
16. Dias JJ, Wildin CJ, Bhowal B, Thompson JR. Should acute scaphoid fractures be fixed? A randomized controlled trial. J Bone Joint Surg Am 2005;87:2160-8. Crossref
17. Karantana A, Downs-Wheeler MJ, Webb K, Pearce CA, Johnson A, Bannister GC. The effects of Scaphoid and Colles casts on hand function. J Hand Surg Br 2006;31:436-8. Crossref
18. Hambidge JE, Desai VV, Schranz PJ, Compson JP, Davis TR, Barton NJ. Acute fractures of the scaphoid. Treatment by cast immobilisation with the wrist in flexion or extension? J Bone Joint Surg Br 1999;81:91-2. Crossref
19. Gelberman RH, Wolock BS, Siegel DB. Fractures and non-unions of the carpal scaphoid. J Bone Joint Surg Am 1989;71:1560-5.
20. Kaneshiro SA, Failla JM, Tashman S. Scaphoid fracture displacement with forearm rotation in a short-arm thumb spica cast. J Hand Surg Am 1999;24:984-91. Crossref
21. Saedén B, Törnkvist H, Ponzer S, Höglund M. Fracture of the carpal scaphoid. A prospective, randomised 12-year follow-up comparing operative and conservative treatment. J Bone Joint Surg Br 2001;83:230-4. Crossref
22. Moser VL, Krimmer H, Herbert TJ. Minimal invasive treatment for scaphoid fractures using the cannulated herbert screw system. Tech Hand Up Extrem Surg 2003;7:141-6. Crossref
23. Bhandari M, Hanson BP. Acute nondisplaced fractures of the scaphoid. J Orthop Trauma 2004;18:253-5. Crossref
24. Dias JJ, Dhukaram V, Abhinav A, et al. Clinical and radiological outcome of cast immobilisation versus surgical treatment of acute scaphoid fractures at a mean follow-up of 93 months. J Bone Joint Surg Br 2008;90:899-905. Crossref
25. McQueen MM, Gelbke MK, Wakefield A, Will EM, Gaebler C. Percutaneous screw fixation versus conservative treatment for fractures of the waist of the scaphoid: a prospective randomised study. J Bone Joint Surg Br 2008;90:66-71. Crossref
26. Yip HS, Wu WC, Chang RY, So TY. Percutaneous cannulated screw fixation of acute scaphoid waist fracture. J Hand Surg Br 2002;27:42-6. CrossRef
27. Shin AY, Hofmeister EP. Percutaneous fixation of stable scaphoid fractures. Tech Hand Up Extrem Surg 2004;8:87-94. Crossref
28. Naranje S, Kotwal PP, Shamshery P, Gupta V, Nag HL. Percutaneous fixation of selected scaphoid fractures by dorsal approach. Int Orthop 2010;34:997-1003. Crossref
29. Wu WC. Percutaneous cannulated screw fixation of acute scaphoid fractures. Hand Surg 2002;7:271-8. Crossref
30. Polsky MB, Kozin SH, Porter ST, Thoder JJ. Scaphoid fractures: dorsal versus volar approach. Orthopedics 2002;25:817-9.
31. Muller M, Germann G, Sauerbier M. Minimal invasive screw fixation and early mobilization of acute scaphoid fractures in the middle third: operative technique and early functional outcome. Tech Hand Up Extrem Surg 2008;12:107-13. Crossref
32. Shih JT, Lee HM, Hou YT, Tan CM. Results of arthroscopic reduction and percutaneous fixation for acute displaced scaphoid fractures. Arthroscopy 2005;21:620-6. Crossref
33. Barton NJ. The late consequences of scaphoid fractures. J Bone Joint Surg Br 2004;86:626-30. Crossref
34. Lindström G, Nyström A. Incidence of post-traumatic arthrosis after primary healing of scaphoid fractures: a clinical and radiological study. J Hand Surg Br 1990;15:11-3. Crossref
35. Amadio PC, Berquist TH, Smith DK, Ilstrup DM, Cooney WP 3rd, Linscheid RL. Scaphoid malunion. J Hand Surg Am 1989;14:679-87. Crossref
36. Inoue G, Sakuma M. The natural history of scaphoid nonunion. Radiographical and clinical analysis in 102 cases. Arch Orthop Trauma Surg 1996;115:1-4. Crossref

Pages